M.E. Degree

in

COMPUTER SCIENCE AND ENGINEERING

CURRICULUM & SYLLABUS (CBCS)

(For students admitted from the Academic Year 2022-2023)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

St. XAVIER'S CATHOLIC COLLEGE OF ENGINEERING

CHUNKANKADAI, NAGERCOIL – 629 003.

KANYAKUMARI DISTRICT, TAMIL NADU, INDIA

M.E. Computer Science and Engineering

Page 1 of 65

St. Xavier's Catholic College of Engineering

VISION To be an institution of eminence of optimal human development, excellent engineering education and pioneering research towards developing a technically-empowered humane society

MISSION

To transform the (rural) youth into top class professionals and technocrats willing to serve local and global society with ethical integrity, by providing vibrant academic experience of learning, research and innovation and stimulating opportunities to develop personal maturity and professional skills, with inspiring and high caliber faculty in a quality and serene infrastructural environment

Inconsonance to the vision of our College,

An engineering graduate we form would be a person with optimal human development, i.e. physical, mental, emotional, social and spiritual spheres of personality. He/she would be an ethical, social responsible and patriotic person.

Academically, he/ she would acquire enhanced knowledge in cutting edge technologies he/she would adapt to new technologies and solve problems that the society is in need of. Also they would serve the industry in middle or upper-level management.

He/she would carry out research and development work to solve practical problems and present it as a technical report. He/she would own his/her own organization/industry and become entrepreneur in his/her specialized area of interest.

As he/she would possess leadership, management skills, critical thinking, problem solving skills and good communication ability he/she would opt for teaching profession and create better engineers to serve the society.

I. PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

	Develop proficiency as a computer science engineer with an ability to solve a wide						
Ι	range of computational problems and have sustainable development in industry or any						
	other work environment.						
	Analyze and adapt quickly to new environments and technologies, gather new						
II	information, and work on emerging technologies to solve multidisciplinary						
	engineering problems.						
ш	Possess the ability to think analytically and logically to understand technical problems						
111	with computational systems for a lifelong learning which leads to pursuing research.						
IV	Adopt ethical practices to collaborate with team members and team leaders to build						
1 V	technology with cutting edge technical solutions for computing systems.						
V	Model a computer based automation system and design algorithms that explore the						
v	understanding of the tradeoffs involved in digital transformation.						

II. **PROGRAMME OUTCOMES (POs)**

PO#	Programme Outcomes
1	An ability to independently carry out research/investigation and development work to solve practical problems.
2	An ability to write and present a substantial technical report/document.
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
4	Efficiently design, build and develop system application software for distributed and centralized computing environments in varying domains and platforms.
5	Design solutions for real world problems by communicating and effectively working with professionals in various engineering fields.
6	Pursue research orientation for a lifelong professional development in computer and automation arenas.

PEU'S – PU'S MAPPING:											
PEO		PROGRAMME OUTCOMES									
ILO	1	2	3	4	5	6					
Ι	3	-	3	3	2	1					
II	3	-	2	3	2	-					
III	3	-	2	2	1	3					
IV	1	2	-	2	2	-					
V	2	-	-	1	-	-					

PEO's – PO's MAPPING:

X 7	G				Р	0		
Year	Sem	Course Code	1	2	3	4	5	6
		MA22102	3	-	1	-	2	-
		CP22101	3	3	-	-	-	-
		CP22102	2	2	2	2	2	1
Ι	Ι	RM22101	-	2	3	-	-	2
		CP22103	3	3	1	-	-	-
		CP22104	3	3	2	-	-	3
	п	CP22201	2	2	2	2	1	1
		CP22202	2	1	2	1	2	2
I		CP22203	2	3	-	2	2	1
	11	CP22204	3	2	3	-	-	-
		CP22205	3	3	-	3	-	-
		RM22201	2	-	3	3	-	-
		CP22301	2	3	3	3	2	3
II	III	CP22302	3	3	3	3	3	-
II	IV	CP22401	3	3	3	3	3	3

PROGRAMME ARTICULATION MATRIX

CURRICULUM

SEMESTER I

SL. NO.	COURSE CODE	COURSE TITLE	CATE -		RIO R WF		TOTAL CONTACT	CREDITS
110.	CODE		GORY	L	Т	Р	PERIODS	
THE	ORY COUR	SES						
1.	MA22102	Applied Probability and Statistics for Computer Engineers	FC	3	1	0	4	4
2.	CP22101	Advanced Data Structures and Algorithms	PCC	3	0	0	3	3
3.		Professional Elective I	PEC	3	0	0	3	3
4.	RM22101	Research Methodology	RMC	2	0	0	2	2
THE	ORY COUR	SES WITH PRACTIC	CAL COM	IPON	ENT			
5.	CP22102	Database Practices	PCC	3	0	2	5	4
PRAG	CTICAL CO	URSES			•			
6.	CP22103	Advanced Data Structures and Algorithms Laboratory	PCC	0	0	4	4	2
EMP	LOYABILI	FY ENHANCEMENT	COURSI	ES				
7.	CP22104	Technical Seminar	EEC	0	0	2	2	1
MAN	DATORY C	COURSES						
8.		Audit Course I	AC	2	0	0	2	0
	I	TOTAL	1	16	1	8	25	19

SEMESTER II

SL.	COURSE	COURSE TITLE	CATE -		RIO R WI	DS EEK	TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	Т	Р	PERIODS	
THE	ORY COUR	SES						
1.	CP22204	Advanced Software Engineering	PCC	3	0	0	3	3
2.		Professional Elective II	PEC	3	0	0	3	3
3.		Professional Elective III	PEC	3	0	0	3	3
THE	ORY COUR	SES WITH PRACTIC	CAL CON	IPON	IEN'	Г		
4.	CP22201	Advanced Operating Systems	PCC	3	0	2	5	4
5.	CP22202	Multicore Architecture and Programming	PCC	3	0	2	5	4
6.	CP22203	Machine Learning	PCC	3	0	2	5	4
PRAG	CTICAL CO	URSES		•	•			
7.	CP22205	Software Engineering Laboratory	PCC	0	0	4	4	2
8.	RM22201	Research Tools Laboratory	RMC	0	0	4	4	2
MAN	DATORY C	COURSES						
9.		Audit Course II	AC	2	0	0	2	0
	•	TOTAL	•	20	0	14	34	25

*On successful completion of the first year, students will attain knowledge on storing, organizing and managing data in an efficient way and designing and deploying modern software systems. Also, they gain an understanding on the practices of data analysis using advanced statistical inferences, models, and theories to find the meaning in large sets of real data and explore new technology and applications.

SL.	COURSE	COURSE TITLE	CATE -		ERIO R WE		TOTAL CONTACT	CREDITS			
NO.	CODE		GORY	L	Т	Р	PERIODS				
THE	THEORY COURSES										
1.		Professional Elective IV	PEC	3	0	0	3	3			
2.		Professional Elective V	PEC	3	0	0	3	3			
3.		Open Elective	OEC	3	0	0	3	3			
EMP	LOYABILIT	TY ENHANCEMENT	COURSI	ES	1	1					
4.	CP22301	Inplant / Industrial / Practical Training (4 weeks during summer vacation)	EEC					2			
5.	CP22302	Project Work I	EEC	0	0	6	6	3			
		TOTAL	•	9	0	6	15	14			

SEMESTER III

SEMESTER IV

SL. NO.	COURSE CODE	COURSE TITLE	CATE -	PERIODS PER WEEK					TOTAL CONTACT	CREDITS
NU.	CODE		GORY	L	Т	Р	PERIODS			
EMP	EMPLOYABILITY ENHANCEMENT COURSES									
1.	CP22401	Project Work II	EEC	-	-	24	24	12		
		ТОТ	AL					12		

Total Credit= 70

*On successful completion of the second year, students will have the ability to apply the knowledge and skills they gained into an effective and useful project/product.

	M.E. COMPUTER SCIENCE AND ENGINEERING											
S.No	Subject Area	Cre	edits po	er Seme	ster	Total Credits						
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	I II III IV			IV							
1	FC	4	-	-	-	4						
2	PCC	9	17	-	-	26						
3	PEC	3	6	6	-	15						
4	OEC	-	-	3	-	3						
5	EEC	1	-	5	12	18						
6	RMC	2	2	-	-	4						
7	Non-Credit AC	0	0	-	-	0						
	Total	19	25	14	12	70						

#### SUMMARY

# AUDIT COURSES (AC)

SL. NO	COURSE CODE	COURSE TITLE	CATE - GORY	PERIODS PER WEEK		PER			TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р	I ERIODS			
1	AC22101	English for Research	AC	2	0	0	2	0		
		Paper Writing								
2	AC22102	Constitution of India	AC	2	0	0	2	0		
3	AC22201	Disaster Management	AC	2	0	0	2	0		
4	AC22202	நற்றமிழ் இலக்கியம்	AC	2	0	0	2	0		

# **PROFESSIONAL ELECTIVE I – SEMESTER I**

SL. NO	COURSE CODE	COURSE TITLE	CATE - PER GORY WEEK		- PER TOTAL		CREDITS	
				L	Т	Р	I ERIODS	
1	CP22111	Network Technologies	PEC	3	0	0	3	3
2	CP22112	Human Computer Interaction	PEC	3	0	0	3	3
3	CP22113	Cloud Computing Technologies	PEC	3	0	0	3	3
4	CP22114	Wireless Communications	PEC	3	0	0	3	3

SL. NO	COURSE CODE	COURSE TITLE	CATE - PER GORY WEEK		PER TOTAL		CREDITS	
				L	Т	Р	I ERIODS	
	CP22221	Principles of	PEC					
		Programming		3	0	0	3	3
		Languages						
	CP22222	Optimization	PEC					
2		Techniques and		3	0	0	3	3
		Applications						
3	CP22223	Natural Language	PEC	3	0	0	3	3
		Processing Techniques		5	U	0	5	3
4	CP22224	GPU Computing	PEC	3	0	0	3	3

# **PROFESSIONAL ELECTIVES II- SEMESTER II**

# **PROFESSIONAL ELECTIVES III – SEMESTER II**

SL. NO	COURSE CODE	COURSE TITLE	CATE - GORY	PERIODS PER WEEK		PER WEEK			TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р	I EKIODS			
1	CP22231	Performance Analysis of Computer Systems	PEC	3	0	0	3	3		
2	CP22232	Data Intensive Computing	PEC	3	0	0	3	3		
3	CP22233	Internet of Things	PEC	3	0	0	3	3		
4	CP22234	Software Quality Assurance	PEC	3	0	0	3	3		

SL. NO	COURSE CODE	COURSE TITLE	CATE - GORY	PERIODS PER WEEK		E - PEI XY WEE		2	TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р	I EKIODS			
1	CP22341	Advanced Digital Image Processing	PEC	3	0	0	3	3		
2	CP22342	Information Retrieval Techniques	PEC	3	0	0	3	3		
3	CP22343	Cognitive Computing	PEC	3	0	0	3	3		
4	CP22344	Data Visualization Techniques	PEC	3	0	0	3	3		

## PROFESSIONAL ELECTIVES IV- SEMESTER III

# **PROFESSIONAL ELECTIVES V – SEMESTER III**

SL. NO	COURSE CODE	COURSE TITLE	CATE - GORY	PERIODS PER WEEK			TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р	I ERIODS	
1	CP22351	Agile Methodologies	PEC	3	0	0	3	3
2	CP22352	Big Data Mining and Analytics	PEC	3	0	0	3	3
3	CP22353	Quantum Computing	PEC	3	0	0	3	3
4	CP22354	Mobile and Pervasive Computing	PEC	3	0	0	3	3

# **SYLLABUS**

# **SEMESTER I**

MA22102	APPLIED PROBABILITY AND STATISTICS FOR COMPUTER ENGINEERS	L	Т	Р	С
		3	1	0	4
COURSE	OBJECTIVES:				
• To e	enable students to understand the concepts of Probability and Random	Vai	riabl	es	
• To 1	understand the basic probability concepts with respect to two dimensio	onal	ranc	lom	
vari	ables along with the significance of the central limit theorem				
• To a	apply the small / large sample tests through Tests of hypothesis				
• To e	encourage students to develop a working knowledge of Analysis of Va	irian	ice		
	enable the students to use the concepts of multivariate normal distribut	ion	and		
<u> </u>	cipal components analysis				10
UNIT I	<ul> <li>PROBABILITY AND RANDOM VARIABLES</li> <li>Axioms of probability - Conditional probability - Baye's theorem- D</li> </ul>	<u>.</u> .			12
variable – H	Probability mass function– Continuous random variable – Probability des - mean, variance– Binomial, Poisson, Geometric, Uniform and Norma	lens	ity f	unc	tior
UNIT II	TWO DIMENSIONAL RANDOM VARIABLES				12
continuous	Marginal distributions - conditional distributions - Central limit the	oren	n(ex	cluc	
	variance Correlation -Karl Pearson correlation coefficient-Regressi ssion coefficient.				-
lines-Regre UNIT III Statistical h	ssion coefficient. TESTING OF HYPOTHESIS sypothesis - Type I and Type II errors - Large sample tests based on Norr	ion- mal	Reg dist	gress ribu	sion 12 tion
lines-Regre UNIT III Statistical h for single m of means - variance an	ssion coefficient. TESTING OF HYPOTHESIS	mal ean a	Reg dist and o st fo	gress ribu equa r sin	tion 12 tion lity
lines-Regre UNIT III Statistical h for single m of means -	ssion coefficient. TESTING OF HYPOTHESIS appothesis - Type I and Type II errors - Large sample tests based on Norman and difference of means -Tests based on t distribution for single me Tests based on F distribution for equality of variances - Chi square	mal ean a	Reg dist and o st fo	gress ribu equa r sin	tion lity gle × c
lines-Regre UNIT III Statistical h for single m of means - variance an tables. UNIT IV General pri randomized way classif	ssion coefficient. <b>TESTING OF HYPOTHESIS</b> appothesis - Type I and Type II errors - Large sample tests based on Normean and difference of means -Tests based on t distribution for single me Tests based on F distribution for equality of variances - Chi square d goodness of fit - Independence of attributes - Contingency table: A <b>DESIGN OF EXPERIMENTS</b> Inciples – Analysis of variance(ANOVA) - One way classification - I design (CRD) – Two way classification - Randomized block design (R ication -Latin square design(LSD) – Two factor experiments: 2 ² factor	mal ean a e tes naly Co	Reg dist and o st fo /sis mpl ) – T	ribu equa r sin of r etel	sion 12 tion llity ngle $\times$ c 12 y e
lines-Regre UNIT III Statistical h for single m of means - variance an tables. UNIT IV General pri randomized way classif UNIT V	ssion coefficient. <b>TESTING OF HYPOTHESIS</b> hypothesis - Type I and Type II errors - Large sample tests based on Normean and difference of means -Tests based on t distribution for single me Tests based on F distribution for equality of variances - Chi square d goodness of fit - Independence of attributes - Contingency table: Attributes - Contingency table: Attributes - Analysis of variance(ANOVA) - One way classification - I design (CRD) – Two way classification - Randomized block design (R ication -Latin square design(LSD) – Two factor experiments: 2 ² factor <b>MULTIVARIATE ANALYSIS</b>	ion- mal ean a e tes naly Co RBD rial o	Reg dist and o st fo ysis mpl ) – T desig	ribu equa r sin of r etel	sion 12 tion lity ngle $\times$ c 12 y e 12
lines-Regre UNIT III Statistical h for single m of means - variance an tables. UNIT IV General pri randomized way classif UNIT V Random ve density and	ssion coefficient. <b>TESTING OF HYPOTHESIS</b> appothesis - Type I and Type II errors - Large sample tests based on Normean and difference of means -Tests based on t distribution for single me Tests based on F distribution for equality of variances - Chi square d goodness of fit - Independence of attributes - Contingency table: A <b>DESIGN OF EXPERIMENTS</b> Inciples – Analysis of variance(ANOVA) - One way classification - I design (CRD) – Two way classification - Randomized block design (R ication -Latin square design(LSD) – Two factor experiments: 2 ² factor	ion- mal ean a e tes naly - Co RBD rial o	Reg dist and o t fo vsis ) – 7 desig	gress ribu equa r sin of r etel fhre gn nor	$\begin{array}{c} 12 \\ 12 \\ 10 \\ 11 \\ 11 \\ 11 \\ 12 \\ 12 \\$
lines-Regre UNIT III Statistical h for single m of means - variance an tables. UNIT IV General pri randomized way classif UNIT V Random ve density and	ssion coefficient. TESTING OF HYPOTHESIS appothesis - Type I and Type II errors - Large sample tests based on Normean and difference of means -Tests based on t distribution for single me Tests based on F distribution for equality of variances - Chi square d goodness of fit - Independence of attributes - Contingency table: A DESIGN OF EXPERIMENTS Inciples – Analysis of variance(ANOVA) - One way classification - d design (CRD) – Two way classification - Randomized block design (R ication -Latin square design(LSD) – Two factor experiments: 2 ² factor MULTIVARIATE ANALYSIS extors and matrices – Mean vectors and covariance matrices – Mult its properties – Principal components – Population principal components	ion- mal ean a e tes naly Co RBD rial o ivar	Reg dist and o st fo ysis ) – 7 desig iate – P	gress ribu equa r sin of r etel fhre gn	sion 12 tion lity ngle × c 12 y e 12 mal ipal
lines-Regre UNIT III Statistical h for single m of means - variance an tables. UNIT IV General pri randomized way classif UNIT V Random ve density and component	ssion coefficient. TESTING OF HYPOTHESIS sypothesis - Type I and Type II errors - Large sample tests based on Normean and difference of means -Tests based on t distribution for single me Tests based on F distribution for equality of variances - Chi squared d goodness of fit - Independence of attributes - Contingency table: Attributes - Contingency table: Attributes - Analysis of variance(ANOVA) - One way classification - I design (CRD) – Two way classification - Randomized block design (R ication -Latin square design(LSD) – Two factor experiments: 2 ² factor MULTIVARIATE ANALYSIS extors and matrices – Mean vectors and covariance matrices – Multi- its properties – Principal components – Population principal components s from standardized variables.	ion- mal ean a e tes naly Co RBD rial o ivar	Reg dist and o st fo ysis ) – 7 desig iate – P	gress ribu equa r sin of r etel fhre gn	sion 12 tion lity ngle × c 12 y e 12 mal ipal
lines-Regre UNIT III Statistical h for single m of means - variance an tables. UNIT IV General pri randomized way classif UNIT V Random ve density and component	ssion coefficient.          TESTING OF HYPOTHESIS         aypothesis - Type I and Type II errors - Large sample tests based on Normean and difference of means -Tests based on t distribution for single me         Tests based on F distribution for equality of variances - Chi square         d goodness of fit - Independence of attributes - Contingency table: A         DESIGN OF EXPERIMENTS         Inciples – Analysis of variance(ANOVA) - One way classification -         I design (CRD) – Two way classification - Randomized block design (R         ication -Latin square design(LSD) – Two factor experiments: 2 ² factor         MULTIVARIATE ANALYSIS         ectors and matrices – Mean vectors and covariance matrices – Mult         its properties – Principal components – Population principal components         s from standardized variables.	ion- mal ean a e tes naly Co RBD rial o ivar	Reg dist and o st fo ysis ) – 7 desig iate – P	gress ribu equa r sin of r etel fhre gn	sion 12 tion lity ngle × c 12 y e 12 mal ipal
lines-Regre UNIT III Statistical h for single m of means - variance an tables. UNIT IV General pri randomized way classif UNIT V Random ve density and component COURSE At the end	ssion coefficient.          TESTING OF HYPOTHESIS         aypothesis - Type I and Type II errors - Large sample tests based on Normean and difference of means -Tests based on t distribution for single me         Tests based on F distribution for equality of variances - Chi square         d goodness of fit - Independence of attributes - Contingency table: A         DESIGN OF EXPERIMENTS         anciples – Analysis of variance(ANOVA) - One way classification -         I design (CRD) – Two way classification - Randomized block design (R         ication -Latin square design(LSD) – Two factor experiments: 2 ² factor         MULTIVARIATE ANALYSIS         extors and matrices – Mean vectors and covariance matrices – Mult         its properties – Principal components – Population principal components         s from standardized variables.         TOTAL :         OUTCOMES:	ion- mal ean a e tes naly Co RBD rial o ivar ents <b>: 60</b>	Reg dist and o at fo ysis ) – 7 desig iate – P PE	ribu equa r sin of r etel fhre gn rinc <b>RIC</b>	sion 12 tion lity ngle × c 12 y e 12 mal ipal
lines-Regree UNIT III Statistical h for single m of means - variance an tables. UNIT IV General pri- randomized way classif UNIT V Random ve density and component COURSE At the end I	ssion coefficient.          TESTING OF HYPOTHESIS         aypothesis - Type I and Type II errors - Large sample tests based on Normean and difference of means -Tests based on t distribution for single me         Tests based on F distribution for equality of variances - Chi square         d goodness of fit - Independence of attributes - Contingency table: A         DESIGN OF EXPERIMENTS         Inciples - Analysis of variance(ANOVA) - One way classification -         I design (CRD) - Two way classification - Randomized block design (R         ication -Latin square design(LSD) - Two factor experiments: 2 ² factor         MULTIVARIATE ANALYSIS         extors and matrices - Mean vectors and covariance matrices - Mult         its properties - Principal components - Population principal components         s from standardized variables.         TOTAL :         OUTCOMES:         of the course, the students will be able to:	ion- mal ean a e tes naly Co RBD rial o ivar ents <b>: 60</b>	Reg dist and o at fo ysis ) – 7 desig iate – P PE	ribu equa r sin of r etel fhre gn rinc <b>RIC</b>	sion 12 tion lity ngle × c 12 y e 12 mal ipal
lines-Regree UNIT III Statistical h for single m of means - variance an tables. UNIT IV General pri- randomized way classif UNIT V Random ver density and component COURSE At the end S CO2	ssion coefficient. TESTING OF HYPOTHESIS  ypothesis - Type I and Type II errors - Large sample tests based on Normean and difference of means -Tests based on t distribution for single me Tests based on F distribution for equality of variances - Chi square d goodness of fit - Independence of attributes - Contingency table: A DESIGN OF EXPERIMENTS Inciples - Analysis of variance(ANOVA) - One way classification - I design (CRD) - Two way classification - Randomized block design (R ication -Latin square design(LSD) - Two factor experiments: 2 ² factor MULTIVARIATE ANALYSIS Extors and matrices - Mean vectors and covariance matrices - Mult its properties - Principal components - Population principal compone s from standardized variables. TOTAL : OUTCOMES: Of the course, the students will be able to: Define the basic concepts of one dimensional, two dimensional random tatistical hypothesis and multivariate techniques Demonstrate the concepts of probability distributions, correlation and re	ion- mal ean a e tes naly - Co RBD rial o ivar ivar ents <b>: 60</b>	Reg dist and o st fo ysis ) – 7 desig iate – P PE	ribu equa r sin of r etel fhre gn rinc <b>RIC</b> les,	sion 12 tion lity ngle × c 12 y e 12 mal ipal DDS
lines-Regree UNIT III Statistical h for single m of means - variance an tables. UNIT IV General pri- randomized way classif UNIT V Random ve density and component COURSE At the end CO1 I s CO2 I t	ssion coefficient. TESTING OF HYPOTHESIS  ypothesis - Type I and Type II errors - Large sample tests based on Norm ean and difference of means -Tests based on t distribution for single me Tests based on F distribution for equality of variances - Chi square d goodness of fit - Independence of attributes - Contingency table: A DESIGN OF EXPERIMENTS Inciples - Analysis of variance(ANOVA) - One way classification - I design (CRD) - Two way classification - Randomized block design (R ication -Latin square design(LSD) - Two factor experiments: 2 ² factor MULTIVARIATE ANALYSIS Extors and matrices - Mean vectors and covariance matrices - Mult its properties - Principal components - Population principal compone s from standardized variables. TOTAL : OUTCOMES: Of the course, the students will be able to: Define the basic concepts of one dimensional, two dimensional random tatistical hypothesis and multivariate techniques	ion- mal ean a e tes naly C Co RBD rial o rial o ivar ents <b>: 60</b>	Reg dist and o t fo ysis ) – T desig iate – P PE	ribu equa r sin of r etel fhre gn rinc <b>RIC</b> les,	sion 12 tion lity ngle × c 12 y e 12 mal ipal DDS

	Apply the concept of testing of hypothesis, analysis of variance and multivariate			
CC				
	normality in real life problems			
REF	TERENCES:			
1.	Dallas E Johnson, "Applied multivariate methods for data Analysis", Thomson and Duxbury			
	press, Singapore, 1998.			
2.	Richard A. Johnson and Dean W. Wichern, "Applied multivariate statistical Analysis", 6 th			
	Edition, Pearson Education, New Delhi, 2023.			
3.	S.P.Gupta, "Statistical Methods", 48 th Edition, Sultan Chand & Sons, New Delhi, 2022.			
4.	Oliver C. Ibe, "Fundamentals of Applied probability and Random Processes", Academic			
	Press, Boston, 2014.			
5.	Johnson R. A., Miller I and Freund J., "Miller and Freund's Probability and Statistics for			
	Engineers", 9 th Edition, Pearson India Education, Asia, New Delhi, 2017.			

Course						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	1	-	2	-
CO2	3	-	1	-	2	-
CO3	3	-	1	-	2	-
CO4	3	-	1	-	2	_
CO5	3	-	1	-	2	-
СО	3	-	1	-	2	-

CP22101	ADVANCED DATA STRUCTURES AND ALGORITHMS	L	Т	Р	С		
		3	0	0	3		
COURSEC	DBJECTIVES:						
<ul> <li>Το ι</li> </ul>	inderstand the usage of algorithms in computing						
• To l	earn the usage of graphs and their applications						
• To l	earn and use hierarchical data structures and their operations						
• To s	elect and design data structures and algorithms that are appropriate for	or pr	oble	ems			
• To s	tudy about NP Completeness of problems						
UNITI	ROLE OF ALGORITHMS IN COMPUTING & COMPLEXIT ANALYSIS	Y			9		
0	- Algorithms as a technology- Insertion Sort - Analyzing Algorith			<u> </u>	0		
0	- Asymptotic Notation – Standard Notations and Common Function	is- F	lecu	rren	ces:		
The Substit	ution Method – The Recursion-Tree Method.						
UNIT II	HIERARCHICAL DATA STRUCTURES				9		
•	ch Trees: Basics – Querying a Binary search tree – Insertion and Dele						
1	rties of Red-Black Trees – Rotations – Insertion – Deletion -B-Trees						
	ic operations on B-Trees – Deleting a key from a B-Tree- Heap – Heap	-					
- Disjoint Sets - Fibonacci Heaps: structure - Mergeable-heap operations-Decreasing a key and							
-	deleting a node-Bounding the maximum degree.						
UNIT III	GRAPHS				9		
•	Graph Algorithms: Representations of Graphs - Breadth-First Searc		-				
Search - Topological Sort - Strongly Connected Components- Minimum Spanning Trees:							
Growing a	Minimum Spanning Tree - Kruskal and Prim- Single-Source Sho	rtest	Pat	hs:	The		

Rellr	nan-Ford algorithm – Single-Source Shortest paths in Directed Acyclic Graphs – Dijkst	ra'e
	rithm; Dynamic Programming - All-Pairs Shortest Paths: Shortest Paths and Ma	
	iplication – The Floyd-Warshall Algorithm.	IIIA
	<b>T IV</b> ALGORITHM DESIGN TECHNIQUES	9
		-
	amic Programming: Matrix-Chain Multiplication – Elements of Dynamic Programmir	<u> </u>
-	gest Common Subsequence- Greedy Algorithms: – Elements of the Greedy Strategy-	An
	vity-Selection Problem - Huffman Coding.	•
	<b>TV</b> NP COMPLETE AND NP HARD	9
	Completeness: Polynomial Time – Polynomial-Time Verification – NP-Completeness	and
Redu	cibility – NP-Completeness Proofs – NP-Complete Problems.	
~~~	TOTAL: 45 PERIO	DDS
	JRSE OUTCOMES:	
	ne end of the course, the students will be able to:	
CC		ues
CC	6 6	
CC	3: Design algorithms to address real-world issues by utilizing graph structure	
CC	4: Create a custom algorithm to solve an ambiguous situation	
CC	5: Apply the appropriate design approach while tackling problems	
REF	ERENCES:	
1.	T.H. Cormen, C.E.Leiserson, R.L. Rivest and C.Stein, "Introduction to Algorithm	ns",
	Fourth Edition, Prentice Hall of India, 2022.	
2.	E. Horowitz, S. Sahni and S. Rajasekaran, "Fundamentals of Computer Algorithr	ns",
	Second Edition, University Press, 2008.	
3.	Adam Drozdex, "Data Structures and algorithms in C++", Fourth Edition, Ceng	age
	Learning, 2013.	
4.	Mark Allen Weiss, "Data Structures and Algorithms in C++", Third Edition, Pear	son
	Education, 2009.	
5.	Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithr	ns".
	Pearson Education, 2006.	~ ,
ı		

Course	Course Programme Outcomes					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	-	-	-	-
CO2	3	3	-	-	-	-
CO3	3	3	-	-	-	-
CO4	3	3	-	-	-	-
CO5	3	3	-	-	_	-
СО	3	3	-	-	-	-
High, 2- Medium	, 1-Low					

CP22102	DATABASE PRACTICES	L	Τ	Р	С				
		3	0	2	4				
COURSEC	COURSEOBJECTIVES:								
• To d	• To describe the fundamental elements of relational database management systems								
	xplain the basic concepts of relational data model, entity-relationship i base design, relational algebra and SQL	node	el, re	elatio	onal				
• To u	nderstand the basics of XML and create well-formed and valid XML	, doc	ume	ents					

	distinguish the different types of NoSQL databases	
	inderstand the different models involved in database security and their application	s in
	time world to protect the database and information associated with them	
UNITI	RELATIONAL DATA MODEL	15
	tionship Model - Relational Data Model - Mapping Entity Relationship Mode	
	Model – Relational Algebra – Structured Query Language – Database Normalizati	on.
Suggested		
	tion Language	
	ate, Alter and Drop	
	orce Primary Key, Foreign Key, Check, Unique and Not Null Constraints	
	ating Views	
	a Manipulation Language	
	rt, Delete, Update	
	tesian Product, Equi Join, Left Outer Join, Right Outer Join and Full Outer Join	
	regate Functions	
	Operations	
	ted Queries Transaction Control Language	
	nmit, Rollback and Save Points	
UNIT II	DISTRIBUTED DATABASES, ACTIVE DATABASES AND OPEN	15
	DATABASE CONNECTIVITY	
	Database Architecture - Distributed Data Storage - Distributed Transaction	
	Query Processing - Distributed Transaction Management - Event Condition Ac	
	esign and Implementation Issues for Active Databases – Open Database Connectiv	vity.
Suggested		
	ributed Database Design and Implementation	
	• •	
	v Level and Statement Level Triggers	
Accessing a	Relational Database using PHP, Python and R	
Accessing a	a Relational Database using PHP, Python and R XML DATABASES	-
Accessing a	Relational Database using PHP, Python and R	-
Accessing a UNIT III Structured, Documents	A Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X – Document Type Definition – XML Schema – XML Documents and Database	ML
Accessing a UNIT III Structured, Documents	a Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X	ML
Accessing a UNIT III Structured, Documents	A Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X – Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery.	ML
Accessing a UNIT III Structured, Documents XML Quer Suggested	A Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X – Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery.	ML
Accessing a UNIT III Structured, Documents XML Quer Suggested	A Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X – Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities:	ML
Accessing a UNIT III Structured, Documents XML Quer Suggested	 Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X – Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema 	ML
Accessing a UNIT III Structured, Documents XML Quer Suggested	 Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X – Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema Using a Relational Database to store the XML documents as text 	ML es –
Accessing a UNIT III Structured, Documents XML Quer Suggested	A Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X – Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema Using a Relational Database to store the XML documents as text Using a Relational Database to store the XML documents as data elements	ML es –
Accessing a UNIT III Structured, Documents XML Quer Suggested	 Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema Using a Relational Database to store the XML documents as text Using a Relational Database to store the XML documents as data elements Creating or publishing customized XML documents from pre-existing relation 	ML es –
Accessing a UNIT III Structured, Documents XML Quer Suggested	 Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X – Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema Using a Relational Database to store the XML documents as text Using a Relational Database to store the XML documents as data elements Creating or publishing customized XML documents from pre-existing relation databases 	ML es –
Accessing a UNIT III Structured, Documents XML Quer Suggested	 Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X – Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema Using a Relational Database to store the XML documents as text Using a Relational Database to store the XML documents as data elements Creating or publishing customized XML documents from pre-existing relatio databases Extracting XML Documents from Relational Databases 	ML es –
Accessing a UNIT III Structured, Documents XML Quer Suggested	A Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X – Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema Using a Relational Database to store the XML documents as text Using a Relational Database to store the XML documents as data elements Creating or publishing customized XML documents from pre-existing relation databases Extracting XML Documents from Relational Databases XML Querying	ML es – onal
Accessing a UNIT III Structured, Documents XML Quer Suggested	 Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema Using a Relational Database to store the XML documents as text Using a Relational Database to store the XML documents as data elements Creating or publishing customized XML documents from pre-existing relation databases Extracting XML Documents from Relational Databases XML Querying NOSQL DATABASES AND BIG DATA STORAGE SYSTEMS 	es – onal ISQL
Accessing a UNIT III Structured, Documents XML Quer Suggested	A Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X – Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema Using a Relational Database to store the XML documents as text Using a Relational Database to store the XML documents as data elements Creating or publishing customized XML documents from pre-existing relation databases Extracting XML Documents from Relational Databases XML Querying NOSQL DATABASES AND BIG DATA STORAGE SYSTEMS Categories of NoSQL Systems – CAP Theorem – Document-Based NoS nd MongoDB – MongoDB Data Model – MongoDB Distributed System	ML es – onal IS QL ems
Accessing a UNIT III Structured, Documents XML Quer Suggested	A Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X – Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema Using a Relational Database to store the XML documents as text Using a Relational Database to store the XML documents as data elements Creating or publishing customized XML documents from pre-existing relation databases Extracting XML Documents from Relational Databases XML Querying NOSQL DATABASES AND BIG DATA STORAGE SYSTEMS Categories of NoSQL Systems – CAP Theorem – Document-Based NoS	ML es – onal 15 QL ems
Accessing a UNIT III Structured, Documents XML Quer Suggested	 Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema Using a Relational Database to store the XML documents as text Using a Relational Database to store the XML documents as data elements Creating or publishing customized XML documents from pre-existing relation databases Extracting XML Documents from Relational Databases XML Querying NOSQL DATABASES AND BIG DATA STORAGE SYSTEMS Categories of NoSQL Systems – CAP Theorem – Document-Based NoS and MongoDB – MongoDB Data Model – MongoDB Distributed Systetics – NoSQL Key-Value Stores – DynamoDB Overview – Voldemort Key-Value Stores – DynamoDB Overview – Voldemort Key-Value Stores – DynamoDB Overview – Voldemort Key-Value 	ML es – onal QL ems alue
Accessing a UNIT III Structured, Documents XML Quer Suggested UNIT IV NoSQL – 0 Systems a Characteris Distributed UNIT V	 Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema Using a Relational Database to store the XML documents as text Using a Relational Database to store the XML documents as data elements Creating or publishing customized XML documents from pre-existing relation databases Extracting XML Documents from Relational Databases XML Querying NOSQL DATABASES AND BIG DATA STORAGE SYSTEMS Categories of NoSQL Systems – CAP Theorem – Document-Based NoS and MongoDB – MongoDB Data Model – MongoDB Distributed Systetics – NoSQL Key-Value Stores – DynamoDB Overview – Voldemort Key-Va Data Store – Wide Column NoSQL Systems. DATABASE SECURITY 	ML es – onal QL ems alue
Accessing a UNIT III Structured, Documents XML Quer Suggested • • • • • • • • • • • • •	a Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X – Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema Using a Relational Database to store the XML documents as text Using a Relational Database to store the XML documents as data elements Creating or publishing customized XML documents from pre-existing relatiod databases Extracting XML Documents from Relational Databases XML Querying NOSQL DATABASES AND BIG DATA STORAGE SYSTEMS Categories of NoSQL Systems – CAP Theorem – Document-Based NoS nd MongoDB – MongoDB Data Model – MongoDB Distributed Systems DATABASE SECURITY ecurity Issues – Discretionary Access Control Based on Granting and Revolution	ML es – onal QL ems alue 15
Accessing a UNIT III Structured, Documents XML Quer Suggested • • • • • • • • • • • • • • • • • • •	 Relational Database using PHP, Python and R XML DATABASES Semi structured, and Unstructured Data – XML Hierarchical Data Model – X Document Type Definition – XML Schema – XML Documents and Database ying – XPath – XQuery. Activities: Creating XML Documents, Document Type Definition and XML Schema Using a Relational Database to store the XML documents as text Using a Relational Database to store the XML documents as data elements Creating or publishing customized XML documents from pre-existing relation databases Extracting XML Documents from Relational Databases XML Querying NOSQL DATABASES AND BIG DATA STORAGE SYSTEMS Categories of NoSQL Systems – CAP Theorem – Document-Based NoS and MongoDB – MongoDB Data Model – MongoDB Distributed Systetics – NoSQL Key-Value Stores – DynamoDB Overview – Voldemort Key-Va Data Store – Wide Column NoSQL Systems. DATABASE SECURITY 	MI es - onal QL ems alue 15 ting

Infrastructures – Preserving Data Privacy – Challenges to Maintaining Database Security – Database Survivability – Oracle Label-Based Security.

Suggested Activity: Implementing Access Control in Relational Databases

TOTAL: 75 PERIODS

COU	RSE OUTCOMES:
At the	e end of the course, the students will be able to:
CO	Outline Relational Data Model, Distributed Database, Xml Database, NoSQL Databases
CO.	and Database Security
CO	2: Make use of Structured Query Language
CO	B: Develop Distributed Database Design
CO4	Build XML Documents, Document Type Definition and XML Schema
CO	5: Experiment with Access Control in Relational Databases
REFI	CRENCES:
1.	R. Elmasri, S.B. Navathe, "Fundamentals of Database Systems", Seventh Edition, Pearson
1.	Education 2016.
2.	Henry F. Korth, Abraham Silberschatz, S. Sudharshan, "Database System Concepts",
2.	Seventh Edition, McGraw Hill, 2019.
3.	C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems", Eighth
э.	Edition, Pearson Education, 2006.
4	Harrison, Guy, "Next Generation Databases, NoSQL and Big Data", Apress publishers,
4.	2015.
5	Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design,
5.	Implementation and Management", Sixth Edition, Pearson Education, 2015.

Mapping of Course Outcomes to Programme Outcomes

Course		P	rogramme (Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	1	1
CO2	1	1	1	1	1	1
CO3	3	2	3	3	3	2
CO4	1	2	1	1	1	1
CO5	2	2	3	3	3	2
СО	2	2	2	2	2	1

RM22101	RESEARCH METHODOLOGY	L	Т	P	С
		2	0	0	2
COURSEO	BJECTIVE:				
• To g	ive an overview of the research methodology and IPR, and explain th	ne te	chni	ique	s of
data	collection and analysis				
UNITI	RESEARCH DESIGN				6
Overview of	f research process and design, Use of Secondary and exploratory dat	a to	ans	wer	the
research que	estion, Qualitative research, Observation studies, Experiments and Sur	rvey	νs.		
UNIT II	DATA COLLECTION AND SOURCES				6
Measuremen	nts, Measurement Scales, Questionnaires and Instruments, Sampling	g an	nd m	netho	ods.
Data - Prepa	ring, Exploring, examining and displaying.				
UNIT III	DATA ANALYSIS AND REPORTING				6

Overvi	ew of Multivariate analysis, Hypotheses testing and Measures of Association. Presenting
Insight	s and findings using written reports and oral presentation.
UNIT	IVINTELLECTUAL PROPERTY RIGHTS6
Intellec	tual Property – The concept of IPR, Evolution and development of concept of IPR, IPR
develo	oment process, Trade secrets, utility Models, IPR & Biodiversity, Role of WIPO and WTO
	establishments, Right of Property, Common rules of IPR practices, Types and Features of
IPR Ag	reement, Trademark, Functions of UNESCO in IPR maintenance.
UNIT	V PATENTS 6
Patents	- objectives and benefits of patent, Concept, features of patent, Inventive step,
Specifi	cation, Types of patent application, process E-filing, Examination of patent, Grant of
patent,	Revocation, Equitable Assignments, Licenses, Licensing of related patents, patent agents,
Registi	ation of patent agents.
	TOTAL: 30 PERIODS
COUR	SE OUTCOMES:
At the	end of the course, the students will be able to:
CO1	
CO2	Explain the research design, data collection methods, IPR and patent
CO3	Prepare a well-structured research paper, scientific presentations and patent
COS	applications
CO4	Develop awareness on IPR, patent law and procedural mechanism in obtaining a patent
CO5	Compare the methods of measurement scale, questionnaire, sampling and data analysis
REFE	RENCES:
	Cooper Donald R, Schindler Pamela S and Sharma JK, "Business Research Methods",
	Eleventh Edition, Tata McGraw Hill Education, 2012.
2.	Kothari C R, Gaurav Garg, "Research Methodology- Methods and Techniques", New Age
	International Publishers, 2019.
3.	Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade
	Secrets", Entrepreneur Press, 2007.
4.	David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques",
	Wiley, 2007.
5.	"Professional Programme Intellectual Property Rights, Law and practice", The Institute of
	Company Secretaries of India, Statutory body under an Act of parliament, 2013.

Mapping of Course Outcomes to	Programme Outcomes
-------------------------------	---------------------------

Course		P	rogramme (Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	3	-	-	-
CO2	-	-	3	-	-	-
CO3	-	2	3	-	-	-
CO4	-	-	3	-	-	-
CO5	-	-	3	-	-	2
CO	-	2	3	-	-	2

CP2210	3 ADVANCED DATA STRUCTURES AND ALGORITHMS LABORATORY	L	Т	Р	С
		0	0	4	2
	EOBJECTIVES:				
• T	o acquire the knowledge of using advanced tree structures				
	o learn the usage of heap structures				
• T	o understand the usage of graph structures and spanning trees				
• T	o understand the problems such as matrix chain multiplication, activ	ity :	selec	ction	and
Н	uffman coding				
• T	o understand the necessary mathematical abstraction to solve problems				
LIST O	EXPERIMENTS				
1	Implementation of recursive function for tree traversal and Fibonacci				
2	Implementation of iteration function for tree traversal and Fibonacci				
3	Implementation of Merge Sort and Quick Sort				
4.	Implementation of Binary Search Tree				
5.	Red-Black Tree Implementation				
	Heap Implementation				
	Fibonacci Heap Implementation				
	Graph Traversals				
	Spanning Tree Implementation				
). Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford algorithm)				
	I. Implementation of Matrix Chain Multiplication				
1.	2. Activity Selection and Huffman Coding Implementation	(DO
COUDO	TOTAL E OUTCOMES:	/: Ol) PE	KIU	5 U
	E OUTCOMES:				
	nd of the course, the students will be able to:				
CO1:	Design and implement basic and advanced data structures extensively				
CO2:	Design algorithms using graph structures				<u> </u>
CO3:	Design and develop efficient algorithms with minimum complexit techniques	y u	sing	des	sign
CO4:	Develop programs using various algorithms				
CO5:	Choose appropriate data structures and algorithms, understand the AL use it to design algorithms for a specific problem	DT/l	ibrar	ries,	and

Course		P	rogramme (Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	-	-	-
CO2	3	3	1	-	-	-
CO3	3	3	1	-	-	-
CO4	3	3	1	-	-	-
CO5	3	2	1	-	-	-
СО	3	3	1	-	-	-

CP22104	TECHNICAL SEMINAR	L	Τ	P	С
		0	0	2	1

COURSEOBJECTIVE:

• To work on a specific technical topic in Computer Science and Engineering in order to acquire the skills of oral presentation and to acquire technical writing abilities for seminars and conferences

METHOD OF EVALUATION:

In this course, the students will work for two hours per week guided by a staff member. They will be asked to talk on any topic of their choice related to Computer Science and Engineering and to engage in dialogue with the audience. A brief copy of their talk also should be submitted. Similarly, the students will have to present a seminar of not less than fifteen minutes and not more than thirty minutes on the technical topic. They will also answer the queries on the topic. The students as audience also should interact. Evaluation will be based on the technical presentation and the report and also on the interaction during the seminar.

TOTAL: 30 PERIODS

COURS	E OUTCOMES:
At the en	nd of the course, the students will be able to:
CO1:	Identify latest developments in the field of Computer Science and Engineering
CO2:	Develop technical writing abilities for seminars, conferences and journal publications
CO3:	Make use of modern tools to present the technical details

Mapping of Course Outcomes to Programme Outcomes

Course		P	rogramme (Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	3	-	-	3
CO2	-	3	1	-	-	3
CO3	-	-	1	-	-	3
СО	3	3	2	-	-	3

SEMESTER II

CP22201	ADVANCED OPERATING SYSTEM	L	T	P	C
COUDCEC		3	0	2	4
	DBJECTIVES:				
	nderstand the concepts of distributed systems				
	et an insight into the various issues and solutions in distributed opera	ting	syst	ems	
	earn about real-time operating systems				
	ain a comprehensive knowledge on the design concepts of mobile op	erati	ng s	syste	ms
	nderstand cloud, multiprocessor and database operating systems				
UNITI	INTRODUCTION				9
	Operating Systems - Issues - Communication Primitives - L				
Distributed	System – Lamport's Logical Clocks – Vector Clocks – Causal Orderi	ng o	of M	essa	ges.
UNIT II	DISTRIBUTED OPERATING SYSTEMS				9
Distributed	Mutual Exclusion Algorithms - Classification - Preliminaries - Si	mpl	e So	olutio	on -
	Algorithm – Ricart-Agrawala Algorithm – Suzuki-Kasami's Broadc				
Raymond's	Tree-Based Algorithm – Distributed Deadlock Detection –	Prel	imin	arie	s –
Centralized	Deadlock Detection Algorithms - Distributed Deadlock Detection Algorithms	lgori	thm	s - I	Path
	gorithm – Edge Chasing Algorithm – Hierarchical Deadlock Detection				
Agreement	Protocols - Classification - Solutions to the Byzantine Agreen	nent	Pro	bler	n –
Lamport-Sh	ostak- Pease Algorithm.				
UNIT III	DISTRIBUTED RESOURCE MANAGEMENT				9
Distributed	File Systems – Design Issues – Google File System – Hadoop Distribu	uted	File	Sys	tem
- Distribute	d Shared Memory – Algorithms for Implementing Distributed Shared	Mer	nory	y - L	oad
Distributing	Algorithms – Synchronous and Asynchronous Check Pointing and F	Reco	very	v - F	ault
Tolerance -	Two-Phase Commit Protocol – Nonblocking Commit Protocol.				
UNIT IV	MULTIPROCESSOR AND DATABASE OPERATING SYSTE	M			9
Multiproces	sor operating systems - Basic multiprocessor system architectures –	Inte	ercor	nnec	tion
networks for	or multiprocessor systems - Caching - Hypercube architecture.	Μu	ıltipi	roce	ssoi
Operating S	System - Structures of multiprocessor operating system, Operating	g sys	stem	des	sign
issues- Th	reads- Process synchronization and scheduling. Database Oper	ratin	ig s	syste	ms:
Introduction	n- Requirements of a database operating system, Concurrency contra	rol:	The	eoret	ical
aspects - Ir	ntroduction, Database systems - A concurrency control model of da	itaba	ise s	yste	ms-
The problem	m of concurrency control - Serializability theory- Distributed da	ıtaba	se s	syste	ms,
Concurrenc	y control algorithms - Introduction, Basic synchronization primitiv	ves,	Loc	k ba	ised
algorithms	- Timestamp based algorithms, Optimistic algorithms - Conc	urre	ncy	con	trol
algorithms:	Data replication.				
UNIT V	REAL TIME MOBILE AND CLOUD OPERATING SYSTEMS	S			9
Basic Mode	el of Real - Time Systems - Characteristics - Application of Real -	Tim	e Sy	vsten	1s –
Real - Time	e Task Scheduling – Handling Resource Sharing – Case studies: Ar	ndro	id –	Ove	erall
Architecture	e – Linux Kernel – Hardware Support – Native User-Space – Dalvil	k an	d A	ndro	id's
Java – Syste	em Services – iOS - Introduction to Cloud Operating Systems.				
	TOTAI	J: 45	PE	RIC	DS
PRACTIC	ALS:				
1. Insta	all Oracle Virtual Box.				
	te virtual machine with appropriate configuration.				
	all Windows OS in Virtual Machine				

3. Install Windows OS in Virtual Machine.

5. Share and transfer the files between Windows and Linux.

6. Build a customized Linux kernel.

7. Install XAMPP server and validate the working of each component.

TOTAL: 30 PERIODS TOTAL: (45+30) 75 PERIODS

COURSE OUTCOMES:

At the	At the end of the course, the students will be able to:						
CO	Explore the working of theoretical foundations of OS						
CO2	Explain the working principles of resource management						
CO	Describe the concepts of distributed shared memory and scheduling mechanisms						
CO ₄	Apply the learning into multiprocessor system architectures						
CO	CO5: Analyze the working of various operating systems						
REFE	REFERENCES:						
1.	Mukesh Singhal and Niranjan G. Shivaratri, "Advanced Concepts in Operating Systems –						
	Distributed, Database and Multiprocessor Operating Systems", Tata MC Graw-Hill, 2001.						
2.	Rajib Mall, "Real-Time Systems: Theory and Practice", Pearson Education India, 2006.						
3.	William Stallings, "Operating Systems Internals and Design Principles", Ninth Edition,						
	Pearson, 2018.						
4.	Pradeep K.Si nha, "Distributed operating system-Concepts and design", PHI, 2003.						
5.	Karim Yaghmour, "Embedded Android", O'Reilly, 2013.						

Mapping of Course Outcomes to Programme Outcomes

Course		P	rogramme (Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	2	2	1	1
CO2	2	2	2	2	1	1
CO3	2	2	2	2	1	1
CO4	2	2	2	2	1	1
CO5	2	2	2	2	1	1
CO	2	2	2	2	1	1

CP22202	MULTICORE ARCHITECTURE AND PROGRAMMING	L	Т	P	С
		3	0	2	4
COURSEC	BJECTIVES:				
•	To understand the need for multi-core processors, and their architec	ture			
•	To understand the challenges in parallel and multithreaded program.	ming	,		
•	To learn about the various parallel programming paradigms				
•	To develop multicore programs and design parallel solutions				
UNITI	MULTI-CORE PROCESSORS				9
Single core	to Multi-core architectures - SIMD and MIMD systems - Intercont	necti	on n	etwo	orks
– Symmetri	ic and Distributed Shared Memory Architectures - Cache coherenc	e – I	Perfo	orma	nce
Issues – Par	allel program design.				
UNIT II	PARALLEL PROGRAM CHALLENGES				9
Performanc	e - Scalability - Synchronization and data sharing - Data races -	Syno	chro	niza	tion
primitives ((mutexes, locks, semaphores, barriers) - deadlocks and livelocks -	- con	nmu	nica	tion

between threads (condition variables, signals, message queues and pipes).

UNIT III SHARED MEMORY PROGRAMMING WITH OpenMP

OpenMP Execution Model – Memory Model – OpenMP Directives – Work-sharing Constructs – Library functions – Handling Data and Functional Parallelism – Handling Loops – Performance Considerations.

UNIT IV DISTRIBUTED MEMORY PROGRAMMING WITH MPI

MPI program execution – MPI constructs – libraries – MPI send and receive – Point-to-point and Collective communication – MPI derived datatypes – Performance evaluation.

UNIT V PARALLEL PROGRAM DEVELOPMENT

Case studies – n-Body solvers – Tree Search – OpenMP and MPI implementations and comparison.

TOTAL: 45 PERIODS

0

9

9

PRACTICALS:

1. Write a simple Program to demonstrate an OpenMP Fork-Join Parallelism.

2. Create a program that computes a simple matrix-vector multiplication b=Ax, either in C/C++. Use OpenMP directives to make it run in parallel.

3. Create a program that computes the sum of all the elements in an array A (C/C++) or a program that finds the largest number in an array A. Use OpenMP directives to make it run in parallel.

4. Write a simple Program demonstrating Message-Passing logic using MPI.

5. Implement the All-Pairs Shortest-Path Problem (Floyd's Algorithm) Using OpenMP.

6. Implement a program Parallel Random Number Generators using Monte Carlo Methods in OpenMP.

7. Write a Program to demonstrate MPI-broadcast-and-collective-communication in C.

8. Write a Program to demonstrate MPI-scatter-gather-and-all gather in C.

9. Write a Program to demonstrate MPI-send-and-receive in C.

10. Write a Program to demonstrate by performing-parallel-rank-with-MPI in C.

TOTAL: 45 PERIODS TOTAL: (45+30)75 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

Attn	the chu of the course, the students will be able to.							
CO)1:	escribe multicore architectures and identify their characteristics and challenges.						
CO	CO2: Identify the issues in programming Parallel Processors							
CO	3: Write programs using OpenMP and MPI							
CO	D4: Design parallel programming solutions to common problems							
CO	CO5: Compare and contrast programming for serial processors and programming for pa							
processors		processors						
REF	ERI	ENCES:						
1.	Pe	eter S. Pacheco, "An Introduction to Parallel Programming, Morgan-Kauffman/Elsevier,						
	20)21.						
2.	D	arryl Gove, "Multicore Application Programming for Windows, Linux, and Oracle						
	Sc	Solaris, Pearson, 2011.						
3.	Μ	tichael J Quinn, "Parallel programming in C with MPI and OpenMP, Tata McGraw Hill,						
	20	003.						

5. Yan Solihin, Fundamentals of Parallel Multicore Architecture, CRC Press, 2015.

Course		P	rogramme (Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	2	1	2
CO2	2	1	-	-	2	2
CO3	1	-	2	1	1	2
CO4	2	1	1	1	2	2
CO5	3	1	2	1	2	3
СО	2	1	2	1	2	2

CP22203	MACHINE LEARNING	L	Τ	P	С
		3	0	2	4
	BJECTIVES:				
	understand the concepts and mathematical foundations of machine le	arni	ng a	ınd	
	es of problems tackled by machine learning				
• To	explore the different supervised learning techniques including ensemi	ble	met	hods	
	outline different aspects of unsupervised learning and reinforcement I	lear	ning	5	
• To	outline the role of probabilistic methods for machine learning				
• To	understand the basic concepts of neural networks and deep learning				
UNITI	INTRODUCTION AND MATHEMATICAL FOUNDATIONS				9
What is M	fachine Learning? Need -History - Definitions - Applications		Adv	anta	ges,
Disadvantag	ges & Challenges - Types of Machine Learning Problems - Mathemati	cal	Fou	ndat	ions
	lgebra & Analytical Geometry - Probability and Statistics - Vect				
Optimizatio	n - Information theory				
UNIT II	SUPERVISED LEARNING				9
Introduction	- Discriminative and Generative Models - Linear Regression - Least S	Squ	ares	- Uı	ider
fitting/ Over	r-fitting - Cross-Validation - Lasso Regression - Classification - Logis	tic]	Reg	ressi	on -
Gradient Li	near Models - Support Vector Machines - Kernel Methods - Instance	bas	sed I	Meth	ods
	: Neighbours - Tree based Methods - Decision Trees - ID3 - CA				
Methods - F	Random Forest - Evaluation of Classification Algorithms				
UNIT III	UNSUPERVISED LEARNING AND REINFORCEMENT LEA	RN	INC	r J	9
Introduction	a - Clustering Algorithms – K-Means - Hierarchical Clustering - Cl	uste	er V	alidi	ty -
Dimensiona	lity Reduction - Introduction - Principal Component Analysis- Reduction	eco	mme	enda	tion
Systems - E	M algorithm. Reinforcement Learning - Elements - Model based Learn	ning	g - T	emp	oral
Difference l	Learning				
UNIT IV	PROBABILISTIC METHODS FOR LEARNING				9
Introduction	-Naive Bayes Algorithm -Maximum Likelihood -Maximum Apriori -	Bay	vesia	ın Be	elief
Networks -	Probabilistic Modelling of Problems -Inference in Bayesian Bell	ief	Net	worl	cs -
Probability	Density Estimation - Sequence Models - Markov Models - Hidden M	arko	ov N	10de	ls
UNIT V	NEURAL NETWORKS AND DEEP LEARNING				9
Neural Netw	works - Biological Motivation- Perceptron - Multi-layer Perceptron	- Fe	eed 1	Forv	vard
	Back Propagation-Activation and Loss Functions- Limitations of Mac				
	ing - introduction - Convolution Neural Networks - Recurrent Neu				-
LSTM- Use					
	TOTAL	: 45	5 PE	RIC	DS
	ED ACTIVITIES:				

1	Cive a new example from our daily life for each type of Machine Learning problem
	Give a new example from our daily life for each type of Machine Learning problem. Study at least 3 open source tools/frameworks available for Machine Learning and discuss
۷.	the pros and cons of each tool/framework.
3	Take an example of a classification problem. Implement a Random Forest and visualize
5.	the individual trees to understand how the model works.
1	Examine the various cross disciplinary use cases of Machine Learning. Eg Machine
	Learning in Bioinformatics, Climate Science, Economics, etc.
5	Outline 10 machine learning applications in healthcare.
	Discuss the recent advancements in Reinforcement Learning and why research in
0.	Reinforcement Learning is hard.
7.	Discuss case studies on the ethical issues that have gained traction in recent years due to
	bulk collection of data. Eg. Racial profiling, Cambridge Analytica.
8.	Give 5 examples where sequential models are suitable.
	Discuss recent CNN architectures.
PRAC	TICAL EXERCISES:
1.	Implement a Linear Regression with a Real Dataset
	(https://www.kaggle.com/harrywang/housing). Experiment with different features in
	building a model. Tune the model's hyperparameters.
2.	Implement a binary classification model. That is, answers a binary question such as "Are
	houses in this neighborhood above a certain price?"(use data from exercise 1). Modify
	the classification threshold and determine how that modification influences the model.
	Experiment with different classification metrics to determine your model's
2	effectiveness.
5.	Classification with Nearest Neighbours. In this question, you will use the scikit-learn's
	KNN classifier to classify real vs. fake news headlines. The aim of this question is for you to read the scikit-learn API and get comfortable with training/validation splits. Use
	California Housing Dataset
4.	In this exercise, you'll experiment with validation sets and test sets using the dataset. Split
	a training set into a smaller training set and a validation set. Analyze deltas between
	training set and validation set results. Test the trained model with a test set to determine
	whether your trained model is overfitting. Detect and fix a common training problem.
5.	Implement the k-means algorithm using https://archive.ics.uci.edu/ml/
	datasets/Codon+usage dataset
6.	Implement the Naive Bayes Classifier using https://archive.ics.uci.edu/mI/
_	datasets/Gait+Classification dataset
1.	Project - (in Pairs) Your project must implement one or more machine learning
	algorithms and apply them to some data.a. Your project may be a comparison of several existing algorithms, or it may propose
	a new algorithm in which case you still must compare it to at least one other
	a new algorithm in which case you still must compare it to at least one other approach.
	b. You can either pick a project of your own design, or you can choose from the set
	of pre-defined projects.
	c. You are free to use any third-party ideas or code that you wish as long as it is
	publicly available.
	d. You must properly provide references to any work that is not your own in the write-
	up.
	e. Project proposal- you must turn in a brief project proposal. Your project proposal
	should describe the idea behind your project. You should also briefly describe
	software you will need to write, and papers (2-3) you plan to read.

	OF PROJECTS:						
	Sentiment Analysis of Product Reviews						
	Stock Prediction						
	Sales Forecasting						
	Music Recommendation						
	Handwriting Digit Classification						
	Fake News Detection						
	Sports Prediction						
	Object Detection						
9.	Disease Prediction						
	TOTAL: 45 PERIOD						
TTAD	TOTAL: (45+30)75 PERIOD						
	DWARE/SOFTWARE REQUIREMENTS:						
	Python 3.x						
	Jupyter Lab						
	Scientific Computing Libraries: Numpy, JAX, MatplotLib						
	Machine Learning Libraries: Scikit-Learning, Turi Create						
	Deep Learning Libraries: Pytorch 1.0, Tensorflow 2.0, TRAX, DyNet						
	Weka, Wekatinator						
7.	Cloud (for Deep Learning): Google Colab, Paperspace Gradient Intel Core i7 9700K or						
COU	Ryzen 7 5800X CPU, with minimum 16GB RAM Etc.						
	RSE OUTCOMES:						
	end of the course, the students will be able to:						
	: Understand and outline problems for each type of machine learning						
CO2							
CO3	and analyze the results						
CO4							
COS	Design and implement an HMM for a Sequence Model type of application						
COA	Identify applications suitable for different types of Machine Learning with suitabl						
COe	justification						
REFE	RENCES:						
1.	Stephen Marsland, "Machine Learning: An Algorithmic Perspective", Second Edition Chapman & Hall/CRC, 2014.						
2.	Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow						
2.	Concepts, Tools, and Techniques to Build Intelligent Systems" Second Edition, O'reilly						
2	2017. Kavin Murrhy, "Mashing Learning: A Brakshilistic Dermostive" MIT Brass 2012						
3.	Kevin Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.						
4.	Tom M Mitchell, "Machine Learning", McGraw Hill Education, 2013.						
5.	Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistica						
	Learning", Springer, 2009.						

111	Mapping of Course Outcomes to Frogramme Outcomes									
Course		Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	3	-	3	1	-				
CO2	2	3	-	2	3	1				
CO3	2	3	-	2	2	1				

CO4	3	3	-	2	3	1
CO5	2	3	-	2	3	1
CO 6	3	3	-	3	2	1
CO	2	3	-	2	2	1

CP22204	ADVANCED SOFTWARE ENGINEERING	L	Τ	P	С
		3	0	0	3
	BJECTIVES:				
• Tou	nderstand the rationale for software development process models				
• Tou	nderstand why the architectural design of software is important				
	inderstand the five important dimensions of dependability, name	ly,	avai	labil	ity,
relia	bility, safety, security, and resilience				
 Το ι 	nderstand the basic notions of a web service, web service standar	ds,	and	serv	vice
	ted architecture				
• Tou	nderstand the different stages of testing from testing during developme	ent o	of a s	oftw	vare
Syst					
UNITI	SOFTWARE PROCESS & MODELING				9
-	Process Models – Agility and Process – Scrum – XP – Kanban – Dev	-			
	n – Prototype Evaluation – Prototype Evolution – Modelling				
-	ts Engineering - Scenario-based Modelling - Class-based Modellin	ng -	- Fu	nctic	nal
	Behavioural Modelling.				
UNIT II	SOFTWARE DESIGN				9
0	cepts – Design Model – Software Architecture – Architectural Styles				
	omponent-Level Design – User Experience Design – Design for Mo	bilit	у —	Patte	ern-
Based Desig					
UNIT III	SYSTEM DEPENDABILITY AND SECURITY				9
	Systems – Dependability Properties – Sociotechnical Systems – R				
	Dependable Processes – Formal Methods and Dependability – Reliabil				
	ity and Reliability – Reliability Requirements – Fault-tolerant				
	g for Reliability – Reliability Measurement – Safety Engineering -				
	Safety Requirements – Safety Engineering Processes – Safety Ca				
	- Security and Dependability - Safety and Organizations - Security				
Secure Syst				- ()	
-	em Design – Security Testing and Assurance – Resilience Engin	eeri	ng -	$\mathcal{O}_{\mathcal{I}}$	ber
security - S	ociotechnical Resilience – Resilient Systems Design.		ng -	0,	
-	Deciotechnical Resilience – Resilient Systems Design. SERVICE-ORIENTED SOFTWARE ENGINEERING, SYSTEM	MS	_		9
security – S UNIT IV	Deciotechnical Resilience – Resilient Systems Design. SERVICE-ORIENTED SOFTWARE ENGINEERING, SYSTEM ENGINEERING AND REAL-TIME SOFTWARE ENGINEER	MS INC	- F		9
security – S UNIT IV Service-orie	Deciotechnical Resilience – Resilient Systems Design. SERVICE-ORIENTED SOFTWARE ENGINEERING, SYSTEM ENGINEERING AND REAL-TIME SOFTWARE ENGINEER Inted Architecture – RESTful Services – Service Engineering – Servi	MS INC ce (i Com	posit	9
security – S UNIT IV Service-orie – Systems E	Deciotechnical Resilience – Resilient Systems Design. SERVICE-ORIENTED SOFTWARE ENGINEERING, SYSTEM ENGINEERING AND REAL-TIME SOFTWARE ENGINEER Inted Architecture – RESTful Services – Service Engineering – Servi Ingineering – Sociotechnical Systems – Conceptual Design – System	MS INC ce C	Com	posit	9 ion nt –
security – S UNIT IV Service-orie – Systems E System Dev	Deciotechnical Resilience – Resilient Systems Design. SERVICE-ORIENTED SOFTWARE ENGINEERING, SYSTEM ENGINEERING AND REAL-TIME SOFTWARE ENGINEER Inted Architecture – RESTful Services – Service Engineering – Service Ingineering – Sociotechnical Systems – Conceptual Design – System elopment – System Operation and Evolution – Real-time Software	MS INC ce (Pro e Er	Com	positement	9 iion nt – g –
security – S UNIT IV Service-orie – Systems E System Dev Embedded S	Deciotechnical Resilience – Resilient Systems Design. SERVICE-ORIENTED SOFTWARE ENGINEERING, SYSTEM ENGINEERING AND REAL-TIME SOFTWARE ENGINEER Inted Architecture – RESTful Services – Service Engineering – Servic Ingineering – Sociotechnical Systems – Conceptual Design – System elopment – System Operation and Evolution – Real-time Software System Design – Architectural Patterns for Real-time Software – Tir	MS INC ce (Pro e Er	Com	positement	9 ion nt – g –
security – S UNIT IV Service-orie – Systems E System Dev Embedded S Real-time C	Service-ORIENTED SOFTWARE ENGINEERING, SYSTEM ENGINEERING AND REAL-TIME SOFTWARE ENGINEERING Inted Architecture – RESTful Services – Service Engineering – Servi Ingineering – Sociotechnical Systems – Conceptual Design – System elopment – System Operation and Evolution – Real-time Software System Design – Architectural Patterns for Real-time Software – Tir perating Systems.	MS INC ce C Pro E Er ning	Com	positement	9 iion nt – g – is –
security – S UNIT IV Service-orie – Systems E System Dev Embedded S	 SERVICE-ORIENTED SOFTWARE ENGINEERING, SYSTE SERVICE-ORIENTED SOFTWARE ENGINEERING, SYSTE ENGINEERING AND REAL-TIME SOFTWARE ENGINEERING nted Architecture – RESTful Services – Service Engineering – Servi ingineering – Sociotechnical Systems – Conceptual Design – System elopment – System Operation and Evolution – Real-time Software System Design – Architectural Patterns for Real-time Software – Tir perating Systems. SOFTWARE TESTING AND SOFTWARE CONFIGURATION 	MS INC ce C Pro E Er ning	Com	positement	9 iion nt – g –
security – S UNIT IV Service-orie – Systems E System Dev Embedded S Real-time C UNIT V	Service-ORIENTED SOFTWARE ENGINEERING, SYSTEM ENGINEERING AND REAL-TIME SOFTWARE ENGINEERING Inted Architecture – RESTful Services – Service Engineering – Servi Ingineering – Sociotechnical Systems – Conceptual Design – System elopment – System Operation and Evolution – Real-time Software System Design – Architectural Patterns for Real-time Software – Tir perating Systems.	MS ce C o Pro e Er ning	Com Docur Igine g An	posit emer erin alys	9 iion nt – g – is – 9

Black-Box Testing – Software Configuration Management (SCM) – SCM Repository – SCM Process – Configuration Management for Web and Mobile Apps.

TOTAL: 45 PERIOD	5
-------------------------	---

COURS	SE OUTCOMES:				
At the e	nd of the course, the students will be able to:				
CO1:	Identify appropriate process models based on the Project requirements				
CO2:	Assess the importance of having a good Software Architecture				
CO3:	Explain the five important dimensions of dependability, namely, availability, reliability, safety, security, and resilience				
CO4: Describe the basic notions of a web service, web service standards, and service oriented architecture					
CO5:	Describe various levels of Software testing				
REFER	REFERENCES:				
	oger Pressman and Bruce Maxim, "Software Engineering: A Practitioner's Approach",				
N	linth Edition. McGraw-Hill 2019.				
2. Ia	an Somerville, "Software Engineering", Tenth Edition, Pearson Education Asia 2016.				
3. L	en Bass, Paul Clements and Rick Kazman, "Software Architecture in Practice", Third				
E	dition, Pearson India 2018.				
	ankajJalote, "An integrated approach to Software Engineering", Third Edition Narosa				
P	ublishing House, 2018.				
5. R	ajib Mall, "Fundamentals of Software Engineering", Fifth Edition, PHI Learning Private				
L	td, 2018.				

Mapping of Course Outcomes to Programme Outcomes

Course		Programme Outcomes							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	-	-	-	-			
CO2	3	2	-	-	-	-			
CO3	3	2	3	-	-	-			
CO4	3	2	3	-	-	-			
CO5	3	2	3	-	-	-			
CO	3	2	3	-	-	-			

CP22 2	05 SOFTWARE ENGINEERING LABORATORY	L	Т	Р	С
		0	0	4	2
COUR	SEOBJECTIVES:				
	To impart state-of-the-art knowledge on Software Engineering and UML manner through the Web	in a	n int	erac	tive
•	Present case studies to demonstrate practical applications of different con	cept	S		
•	Provide a scope to students where they can solve small, real-life problems	S			
LIST (DF EXPERIMENTS				
1.	Write a Problem Statement to define a title of the project with bounded so	cope	ofp	oroje	ct
2.	Select relevant process model to define activities and related task set for	assi	gned	l pro	ject
	Tentative				

3. P	repare broad SRS (Software Requirement Specification) for the above selected projects
4. P	repare USE Cases and Draw Use Case Diagram using modelling Tool
5. D	Develop the activity diagram to represent flow from one activity to another for software
d	evelopment
6. D	Develop data Designs using DFD Decision Table & ER Diagram.
7. D	Draw class diagram, sequence diagram, Collaboration Diagram, State Transition Diagram
fo	or the assigned project
8. V	Vrite Test Cases to validate requirements of assigned project from SRS Document
9. E	valuate Size of the project using function point metric for the assigned project
10. E	stimate cost of the project using COCOMO and COCOCMOII for the assigned project
11. U	se CPM/PERT for scheduling the assigned project
12. U	se timeline Charts or Gantt Charts to track progress of the assigned project
	TOTAL: 60 PERIODS
COURS	E OUTCOMES:
At the en	nd of the course, the students will be able to:
CO1:	Produce the requirements and use cases the client wants for the software being produced
	Participate in drawing up the project plan. The plan will include at least extent and work
CO2:	assessments of the project, the schedule, available resources, and risk management can
	model and specify the requirements of mid-range software and their architecture
COL	Create and specify such a software design based on the requirement specification that
CO3:	the software can be implemented based on the design
CO4:	Assess the extent and costs of a project with the help of several different assessment
CO4:	methods

Course		Programme Outcomes						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	-	3	-	-		
CO2	3	3	-	3	-	-		
CO3	3	3	-	3	-	-		
CO4	3	3	-	3	-	-		
CO	3	3	-	3	-	-		

RM22201	RESEARCH TOOLS LABOTRATORY	L	Т	Р	С
		0	0	4	2
COURSEO	BJECTIVES:				
To fa	miliarize the fundamental concepts/techniques for Project Management	ent			
To fa	miliarize the journal paper formatting using suitable Software				
To fa	miliarize the software for literature review and Bibliography				
To fi	nd the plagiarism percentage of article contents				
• To p	repare a quality research report and the presentation				
LIST OF E	XPERIMENTS:				
1. Use of to	ools / Techniques for Research - Project management -Microsoft Proj	ect /	' Mi	cros	oft
OneNote	e / Asana.				

- 2. Hands on Training related to Software for Paper Formatting like LaTeX / MS Office
- 3. Design a Layout of a Research Paper Guidelines for Submitting the Research Paper Review Process -Addressing Reviewer Comments.
- 4. Introduction to Data Analysis Software Origin SPSS, ANOVA etc.,
- 5. Introduction to Software for detection of Plagiarism Urkund, Turniton
- 6. Preparing Bibliography / Different Reference Formats. EndNote, Mently
- Format of Project Report Use of Quotations Method of Transcription- Elements: Title Page - Abstract - Table of Contents - Headings and Sub-Headings - Footnotes - Tables and Figures
- 8. Introduction to Microsoft Excel -for Research Analysis
- 9. Presentation using PPTs.
- 10. Data analysis using Matlab.

TOTAL: 45 PERIODS

COURS	E OUTCOMES:
	ad of the course, the students will be able to:
	List the various stages in research and develop systematic planning of project stages
CO2:	Write a journal paper and formulate as per the standard journal format
CO3:	Develop a literature review and relevant references for a research problem using suitable software
CO4:	Determine the plagiarism of the article / report content by using the Software
CO5:	Compile a research report and the presentation

Mapping of Course Outcomes to Programme Outcomes

Course	Programme Outcomes						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	-	2	2	-	-	
CO2	2	-	3	2	-	-	
CO3	2	-	-	3	-	-	
CO4	2	-	3	3	-	-	
CO5	2	-	3	3	-	-	
CO	2	-	3	3	-	-	

SEMESTER III

CP22301	PRACTICAL TRAINING	L	Т	Р	С		
		0	0	0	2		
COURSEOBJECTIVES:							

• To train the students in the field work so as to have first-hand knowledge of practical problems related to Computer Science Engineering in carrying out engineering tasks

SYLLABUS

The students individually undertake training in reputed companies during the summer vacation for a specified duration of four weeks. At the end of training, a detailed report on the work done should be submitted within ten days from the commencement of the semester. The students will be evaluated through a viva-voce examination by a team of internal staff.

COURSE	COURSE OUTCOMES:			
Upon con	Upon completion of the course, the students will/ will be able to			
CO1:	Describe the Computer Engineering organization			
CO2:	Realize the various functions of industrial activities			
CO3:	Gain understanding of groups and group dynamics			

Mapping of Course Outcomes to Programme Outcomes

CO	Programme Outcomes								
CO	PO1	PO2	PO3	PO4	PO5	PO6			
1	2	3	3	3	2	3			
2	2	3	3	3	2	3			
3	2	3	3	3	2	3			
Average	2	3	3	3	2	3			

3-High, 2- Medium, 1-Low

CP22302	PROJECT WORK I	L	Т	Р	С			
		0	0	6	3			
COURSEOBJECTIVES:								

- To identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature.
- To develop the methodology to solve the identified problem
- To train the students in preparing project reports and to face reviews and vivavoce examination

SYLLABUS

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

TOTAL: 90 PERIODS

COURSE OUTCOMES:				
Upon completion of the course, the students will/ will be able to				
CO1:	Develop the ability to solve a specific problem right from its identification and			
COI	literature review till the successful solution and prepare project reports.			

СО		Programme Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6				
1	3	3	3	3	3	-				
Average	3	3	3	3	3	-				

3-High, 2- Medium, 1-Low

SEMESTER IV

CP2240)1	PROJE	CT WOR	KII	CP22401PROJECT WORK IILT				
						0	0	24	12
COURSEOBJ	ECTIVES:								
To solv	• To solve the identified problem based on the formulated methodology.								
• To deve	• To develop skills to analyze and discuss the test results, and make conclusions.								
SYLLABUS									
The student sh	ould continu	e the phase I w	ork on th	e selected	l topic as p	er th	e fo	ormul	lated
methodology /	Undergo inte	rnship. At the end	d of the se	mester, af	ter complet	ng th	e wo	ork to	the
satisfaction of	the superviso	r and review cor	nmittee, a	detailed 1	eport shoul	d be	prep	ared	and
submitted to th	e head of the	department. The	students w	vill be eva	luated base	d on	the r	eport	and
the viva-voce e	xamination b	y a panel of exam	niners inclu	uding one	external ex	amine	er.		
TOTAL: 360 PERIODS									
COURSE OU	FCOMES:								
Upon completion of the course, the students will/ will be able to									
	Discover potential research areas in the field of Computer Science Engineering						ering		
CO1: about the knowledge gained from theoretical and practical courses to be c						crea	tive,		
	well planned	organized and c	coordinated	d, and pre	sent the fir	ding	s of	the v	vork
	conducted by	report.							

Mapping of Course Outcomes to Programme Outcomes

СО	Programme Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	3	3	3	3	3	3		
Average	3	3	3	3	3	3		

PROFESSIONAL ELECTIVE I

3 0 0 3 COURSEOBJECTIVES: • To understand the basic concepts of networks • To explore various technologies in the wireless domain • To study about 4G and 5G cellular networks • To learn about Network Function Virtualization • To understand the paradigm of Software defined networks UNITI NETWORKING CONCEPTS 9 Peer to Peer Vs Client-Server Networks. Network Devices. Network Terminology. Netword Speeds. Network throughput, delay. OSI Model. Packets, Frames, and Headers. Collision and Broadcast Domains. LAN Vs WAN. Network Adapter. Hub. Switch. Router. Firewall, II addressing.					
 To understand the basic concepts of networks To explore various technologies in the wireless domain To study about 4G and 5G cellular networks To learn about Network Function Virtualization To understand the paradigm of Software defined networks UNITI NETWORKING CONCEPTS Peer to Peer Vs Client-Server Networks. Network Devices. Network Terminology. Network Speeds. Network throughput, delay. OSI Model. Packets, Frames, and Headers. Collision and Broadcast Domains. LAN Vs WAN. Network Adapter. Hub. Switch. Router. Firewall, II 					
 To explore various technologies in the wireless domain To study about 4G and 5G cellular networks To learn about Network Function Virtualization To understand the paradigm of Software defined networks UNITI NETWORKING CONCEPTS Peer to Peer Vs Client-Server Networks. Network Devices. Network Terminology. Network Speeds. Network throughput, delay. OSI Model. Packets, Frames, and Headers. Collision and Broadcast Domains. LAN Vs WAN. Network Adapter. Hub. Switch. Router. Firewall, II 					
 To study about 4G and 5G cellular networks To learn about Network Function Virtualization To understand the paradigm of Software defined networks UNITI NETWORKING CONCEPTS Peer to Peer Vs Client-Server Networks. Network Devices. Network Terminology. Network Speeds. Network throughput, delay. OSI Model. Packets, Frames, and Headers. Collision and Broadcast Domains. LAN Vs WAN. Network Adapter. Hub. Switch. Router. Firewall, II 					
 To learn about Network Function Virtualization To understand the paradigm of Software defined networks UNITI NETWORKING CONCEPTS Peer to Peer Vs Client-Server Networks. Network Devices. Network Terminology. Network Speeds. Network throughput, delay. OSI Model. Packets, Frames, and Headers. Collision and Broadcast Domains. LAN Vs WAN. Network Adapter. Hub. Switch. Router. Firewall, II 					
 To understand the paradigm of Software defined networks UNITI NETWORKING CONCEPTS Peer to Peer Vs Client-Server Networks. Network Devices. Network Terminology. Network Speeds. Network throughput, delay. OSI Model. Packets, Frames, and Headers. Collision and Broadcast Domains. LAN Vs WAN. Network Adapter. Hub. Switch. Router. Firewall, II 					
UNITI NETWORKING CONCEPTS 9 Peer to Peer Vs Client-Server Networks. Network Devices. Network Terminology. Network 9 Speeds. Network throughput, delay. OSI Model. Packets, Frames, and Headers. Collision and 9 Broadcast Domains. LAN Vs WAN. Network Adapter. Hub. Switch. Router. Firewall, II 9					
Peer to Peer Vs Client-Server Networks. Network Devices. Network Terminology. Network Speeds. Network throughput, delay. OSI Model. Packets, Frames, and Headers. Collision and Broadcast Domains. LAN Vs WAN. Network Adapter. Hub. Switch. Router. Firewall, II					
Speeds. Network throughput, delay. OSI Model. Packets, Frames, and Headers. Collision and Broadcast Domains. LAN Vs WAN. Network Adapter. Hub. Switch. Router. Firewall, II					
$\partial \theta$					
UNIT II WIRELESS NETWORKS 9					
Wireless access techniques- IEEE 802.11a, 802.11g, 802.11e, 802.11n/ac/ax/ay/ba/be, QoS Bluetooth – Protocol Stack – Security – Profiles – Zigbee					
UNIT III MOBILE DATA NETWORKS					
4G Networks and Composite Radio Environment – Protocol Boosters – Hybrid 4G Wireless Networks Protocols – Green Wireless Networks – Physical Layer and Multiple Access – Channe Modelling for 4G – Concepts of 5G – channel access –air interface - Cognitive Radio spectrum management – C-RAN architecture - Vehicular communications-protocol – Network slicing – MIMO, mmWave, Introduction to 6G					
UNIT IV SOFTWARE DEFINED NETWORKS 9					
SDN Architecture. Characteristics of Software-Defined Networking. SDN- and NFV-Related Standards. SDN Data Plane. Data Plane Functions. Data Plane Protocols. OpenFlow Logical Network Device. Flow Table Structure. Flow Table Pipeline. The Use of Multiple Tables. Group Table. OpenFlow Protocol. SDN Control Plane Architecture. Control Plane Functions Southbound Interface. Northbound Interface. Routing. ITU-T Model. OpenDaylight Architecture OpenDaylight Helium. SDN Application Plane Architecture. Northbound Interface. Network Applications. User Interface.					
UNIT VNETWORK FUNCTIONS VIRTUALIZATION9					
Motivation-Virtual Machines –NFV benefits-requirements – architecture- NFV Infrastructure - Virtualized Network Functions - NFV Management and Orchestration- NFV Use Cases- NFV and SDN –Network virtualization – VLAN and VPN.					
TOTAL: 45 PERIODS					
COURSE OUTCOMES:					
At the end of the course, the students will be able to:					
CO1: Illustrate the fundamental ideas of networks					
CO2: Discover the ideas behind wireless networks					
CO3: Summarize the 4G and 5G ideas for mobile data networks					
CO4: Enumerate the features of software-defined networks					
CO5: Demonstrate Network Functions Virtualization					
REFERENCES:					
 James Bernstein, "Networking made Easy", 2018. William Stallings – "Foundations of Modern Networking: SDN, NFV, QoE, IoT, and 					
2. William Stallings – "Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud", Pearson Education, 2016.					

э.	HoudaLabiod, Costantino de Santis, HossamAfifi "Wi-Fi, Bluetooth, Zigbee and WiMax", Springer 2007.
4.	Erik Dahlman, Stefan Parkvall, Johan Skold, 4G: LTE/LTE-Advanced for Mobile Broadband, Academic Press, 2013.
ר	Saad Z. Asif – "5G Mobile Communications Concepts and Technologies" CRC press – 2019.

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	1	2	1	-	-			
CO2	2	2	3	2	-	-			
CO3	1	2	2	2	-	-			
CO4	2	2	3	1	-	-			
CO5	2	2	3	1	-	-			
СО	2	2	3	1	-	-			

CP22112	HUMAN COMPUTER INTERACTION	L	Т	Р	С		
		3	0	0	3		
COURSEC	DBJECTIVES:						
• To 1	earn the foundations of Human Computer Interaction						
	erstanding Interaction Styles and to become familiar with the design viduals and persons with disabilities	tech	nolo	gies	for		
• To u	inderstand the process of Evaluation of Interaction Design						
• To c	larify the significance of task analysis for ubiquitous computing						
• To g	get insight on web and mobile interaction						
UNITI	FOUNDATIONS OF HCI				9		
cognition a Understand of User Inte	Context of Interaction –Ergonomics - Designing Interactive systems – Understanding Users- cognition and cognitive frameworks, User Centred approaches Usability, Universal Usability, Understanding and conceptualizing interaction, Guidelines, Principles and Theories. Importance of User Interface: Definition-Importance of good design-Benefits of good design-Human-centered development and Evaluation-Human Performance models-A Brief history of screen design				lity, nce		
UNIT II	UNIT IIINTERACTION STYLES9						
GUI: Popularity of graphics - The concept of direct manipulation - Graphical system - Characteristics - Web user - Interface Popularity - Characteristics and Principles of User Interface. Understanding interaction styles, Direct Navigation and Immersive environments, Fluid navigation, Expressive Human and Command Languages, Communication and Collaboration Advancing the user experience, Timely user Experience, Information search, Data Visualization Design process: Human Interaction with computers - Importance of Human Characteristics - Human Consideration - Human Interaction Speeds and Understanding Business Junctions.							
UNIT IIIVALUATION OF INTERACTION9							

Evaluati	on Techniques- assessing user experience- usability testing – Heuristic evaluation a	and
walkthro	bughs, analytics predictive models. Cognitive models, Socio-organizational issues a	and
	der requirements, Communication and collaboration models.	
UNIT I	V MODELS AND THEORIES	9
Task and	alysis, dialog notations and design, Models of the system, Modeling rich interaction	on,
Ubiquito	ous computing.	
UNIT V	WEB AND MOBILE INTERACTION	9
Hypertex	xt, Multimedia and WWW, Designing for the web Direct Selection, Contextual Toc	ols,
-	s, Inlays and Virtual Pages, Process Flow. Use Transitions-Lookup patterns-Feedba	
-	Mobile apps, Mobile navigation, content and control idioms, Multi-touch gestures, Int	er-
app integ	gration, Mobile web.	
	TOTAL: 45 PERIO	DS
	E OUTCOMES:	
At the e	nd of the course, the students will be able to:	
CO1:	Explain the basics of human computer interactions via usability engineering a	ınd
	Cognitive modeling	
CO2:	Describe the basic design paradigms and complex interaction styles	
CO3:	Demonstrate the evaluation of interaction designs and implementations	
CO4:	Describe the models and theories for user interaction	
CO5:	Illustrate web and mobile applications	
	ENCES:	
	en Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs, Niklas Elmqvi	
	Designing the User Interface: Strategies for Effective Human-Computer Interaction	n",
	ixth Edition, Pearson Education, 2016.	
	lan Dix, Janet Finlay, G D Abowd and Russel Beale, "Human Computer Interaction	n",
	hird Edition, Pearson Education, 2004.	
	elen Sharp, Jennifer Preece, Yvonne Rogers, "Interaction Design: Beyond Huma	an-
C	omputer Interaction", Fifth Edition, Wiley, 2019.	
	lan Cooper, Robert Reimann, David Cronin, Christopher Noessel, "About Face: T	he
E	ssentials of Interaction Design", Fourth Edition, Wiley, 2014.	
5. D	onald A. Norman, "Design of Everyday Things", MIT Press, 2013.	

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	3	-	-	-			
CO2	3	2	3	-	-	-			
CO3	3	3	2	-	-	-			
CO4	3	3	2	-	-	-			
CO5	2	3	1	-	-	-			
СО	3	3	2	-	-	-			

3-High, 2- Medium, 1-Low

3 0 0 3 COURSEOBJECTIVES: • To gain expertise in Virtualization, Virtual Machines and deploy practical virtualization solution • To understand the architecture, infrastructure and delivery models of cloud computing • To explore the roster of AWS services and illustrate the way to make applications in AWS • To gain knowledge in the working of Windows Azure and Storage services offered by Windows Azure • To develop the cloud application using various programming model of Hadoop and Aneka UNTTI VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE 6 Basics of Virtual Machines - Process Virtual Machines - System Virtual Machines - Emulation - Interpretation - Binary Translation - Taxonomy of Virtual Machines - Virtualization - Management - Storage Virtualization - Network Virtualization of CPU, Memory and I/O evices - virtual clusters and Resource Management -Virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management -Virtualization of CPU, Memory and I/O hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, platform, software - A Generic Cloud Architecture Design - Layered cloud Architectural Development -Architectural Design Challenges 9 Mazon Web Services: AWS Infrastructure - AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Controller AWS Auto Scale Projeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scale Proy, AWS code Prigeline, AWS code Star - AWS Management Tools: Cloud	CP22113	CLOUD COMPUTING TECHNOLOGIES	L	Т	Р	С		
To gain expertise in Virtualization, Virtual Machines and deploy practical virtualization solution To understand the architecture, infrastructure and delivery models of cloud computing To explore the roster of AWS services and illustrate the way to make applications in AWS To gain knowledge in the working of Windows Azure and Storage services offered by Windows Azure To develop the cloud application using various programming model of Hadoop and Aneka UNITI VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE 6 Basics of Virtual Machines - Process Virtual Machines - System Virtual Machines. Virtualization - Interpretation - Binary Translation - Taxonomy of Virtual Machines. Virtualization - Management Virtualization - Hardware Maximization - Architectures - Virtualization - Management - Storage Virtualization - Network Virtualization - Management - virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management -Virtualization of CAU. Memory and I/O devices - virtual clusters and Resource Management -Virtualization for data center automation UNTI II CLOUD PLATFORM ARCHITECTURE 12 Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, platform, software - A Generic Cloud Architecture Design - Layered cloud Architectural Development -Architectural Design Challenges UNTI II AWS CLOUD PLATFORM - IAAS 9 Amazon Web Services: AWS Infrastructure- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage UNIT IV PAAS CLOUD PLATFORM PAAS CLOUD PLATFORM - IAAS Virtualization and Configura			3	0	0	3		
solution • To understand the architecture, infrastructure and delivery models of cloud computing • To explore the roster of AWS services and illustrate the way to make applications in AWS • To gain knowledge in the working of Windows Azure and Storage services offered by Windows Azure • To develop the cloud application using various programming model of Hadoop and Aneka UNITI VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE 6 Basics of Virtual Machines - Process Virtual Machines - System Virtual Machines - Emulation - Interpretation - Binary Translation - Taxonomy of Virtual Machines. Virtualization -Management Virtualization - Network Virtualization - Implementation levels of virtualization - virtualization - Network Virtualization - Implementation levels of virtualization - virtualization structure -virtualization for data center automation (UNTI II CLOUD PLATFORM ARCHITECTURE [12 Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, plafform, software - A Generic Cloud Architectura Design - Layered cloud Architectural Design Challenges 9 UNTI II AWS CLOUD PLATFORM - IAAS 9 Mazon Web Services: AWS Infrastructure- AWS API - AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Build, AWS Code Deploy, AWS Code Pipeline, AWS code Star - AWS Management Tools: Cloud API- Windows Azure, Features, The Fabric Controller 3 First Cloud API windows Azure: Service Model and Managing Services: Defi	COURSEO	BJECTIVES:						
To understand the architecture, infrastructure and delivery models of cloud computing To explore the roster of AWS services and illustrate the way to make applications in AWS To gain knowledge in the working of Windows Azure and Storage services offered by Windows Azure To develop the cloud application using various programming model of Hadoop and Aneka UNTI VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE 6 Basics of Virtual Machines - Process Virtual Machines - System Virtual Machines - Emulation - Interpretation - Binary Translation - Taxonomy of Virtual Machines - Virtualization - Management Virtualization - Hardware Maximization - Architectures - Virtualization - virtualization structure -virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management -Virtualization for data center automation UNIT II CLOUD PLATFORM ARCHITECTURE 12 Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, platform, software - A Generic Cloud Architecture Design - Layered cloud Architectural pevelopment -Architectural Design Challenges UNIT III AWS CLOUD PLATFORM - IAAS 9 Amazon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubermetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS Code Pipeline, AWS code Star - AWS Management Tools: Cloud APP in Windows Azure: Origin of Windows Azure: Peatures, The Fabric Controller 3 First Cloud APP in Windows Azure: Service Model and Managing Services: Definition and Configuration, service: Infinition of Hadoop file system 3Setting up Hadoop Cluster - Aneka: Cloud Applications - Design of Hadoop file system 3Setting up Hadoop Cluster - Aneka: Cloud Application to Hadoop Frame	• To g	ain expertise in Virtualization, Virtual Machines and deploy practic	al v	irtua	lizat	ion		
 To explore the roster of AWS services and illustrate the way to make applications in AWS To gain knowledge in the working of Windows Azure and Storage services offered by Windows Azure To develop the cloud application using various programming model of Hadoop and Aneka UNITI VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE 6 Basics of Virtual Machines - Process Virtual Machines - System Virtual Machines - Immulation - Interpretation - Binary Translation - Taxonomy of Virtual Machines - Virtualization - Management Virtualization - Hardware Maximization - Architectures - Virtualization - Management - Virtualization - Network Virtualization - Memory and I/O devices - virtual clusters and Resource Management - Virtualization for data center automation levels of virtual: Extern and Resource Management - Virtualization for data center automation UNIT II CLOUD PLATFORM ARCHITECTURE 12 Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure appletorm, software - A Generic Cloud Architecture Design - Layered cloud Architectural Development -Architectural Design Challenges UNIT III AWS CLOUD PLATFORM - IAAS 9 Mamzon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Build, AWS Code Buello, AWS Code Bipeline, AWS Code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage UNIT IV PAOSCAUD PLATFORM 9 Windows Azure: Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Man	solut	ion						
 To gain knowledge in the working of Windows Azure and Storage services offered by Windows Azure To develop the cloud application using various programming model of Hadoop and Aneka UNITI VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE 6 Basics of Virtual Machines - Process Virtual Machines - System Virtual Machines - Emulation - Interpretation - Binary Translation - Taxonomy of Virtual Machines. Virtualization - Management Virtualization - Hardware Maximization - Architectures - Virtualization Management - Storage Virtualization - Network Virtualization - Implementation levels of virtualization - virtualization structure -virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management -Virtualization for data center automation levels of virtualization - CLOUD PLATFORM ARCHITECTURE 12 Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, platform, software- A Generic Cloud Architecture Design - Layered cloud Architectural Design Challenges UNIT III AWS CLOUD PLATFORM - IAAS 9 Amazon Web Services: AWS Infrastructure- AWS API-AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage Cluster - Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Services REST API- Blops UNIT IV PROGRAMMING MODEL 9 Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Develo				-				
Windows Azure • To develop the cloud application using various programming model of Hadoop and Aneka UNITI VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE 6 Basics of Virtual Machines - Process Virtual Machines - System Virtual Machines. 6 Virtualization - Interpretation - Binary Translation - Taxonomy of Virtual Machines. 7 Virtualization - Management Virtualization - Hardware Maximization - Architectures - Virtualization for data center automation 10 Virtualization - virtualization structure -virtualization for data center automation 12 Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, platform, software- A Generic Cloud Architecture Design - Layered cloud Architectural Development -Architectural Design Challenges 9 UNIT II AWS CLOUD PLATFORM - IAAS 9 Amazon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Build, AWS Code Deploy, AWS Code Pipeline, AWS code Star - AWS Management Tools: Cloud AAC, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage UNIT IV PAAS CLOUD PLATFORM 9 Windows Azure: Origin of Windows Azure, Features, The Fabric Controller 3 First Cloud								
UNITI VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE 6 Basics of Virtual Machines - Process Virtual Machines - System Virtual Machines - Emulation - Interpretation - Binary Translation - Taxonomy of Virtual Machines. Virtualization - Management Virtualization - Hardware Maximization - Architectures - Virtualization - Virtualization structure -virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management -Virtualization of data center automation UNIT II CLOUD PLATFORM ARCHITECTURE 12 Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, platform, software - A Generic Cloud Architecture Design - Layered cloud Architectural Development -Architectural Design Challenges 9 UNIT III AWS CLOUD PLATFORM - IAAS 9 Amazon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage 9 Windows Azure: Origin of Windows Azure, Features, The Fabric Controller 3 First Cloud APP in Windows Azure: Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops 9 UNIT V </td <td>U</td> <td colspan="7"></td>	U							
UNITI VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE 6 Basics of Virtual Machines - Process Virtual Machines - System Virtual Machines - Emulation - Interpretation - Binary Translation - Taxonomy of Virtual Machines. Virtualization - Management Virtualization - Hardware Maximization - Architectures - Virtualization - Virtualization structure -virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management -Virtualization of data center automation UNIT II CLOUD PLATFORM ARCHITECTURE 12 Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, platform, software - A Generic Cloud Architecture Design - Layered cloud Architectural Development -Architectural Design Challenges 9 UNIT III AWS CLOUD PLATFORM - IAAS 9 Amazon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage 9 Windows Azure: Origin of Windows Azure, Features, The Fabric Controller 3 First Cloud APP in Windows Azure: Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops 9 UNIT V </td <td colspan="8">• To develop the cloud application using various programming model of Hadoop and Aneka</td>	• To develop the cloud application using various programming model of Hadoop and Aneka							
Emulation - Interpretation - Binary Translation - Taxonomy of Virtual Machines. Virtualization -Management Virtualization - Hardware Maximization - Architectures Virtualization Management Virtualization - Network Virtualization - Mentectures Virtualization - virtualization - Virtualization - Memory and I/O devices - virtual clusters and Resource Management -Virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management -Virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management -Virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management -Virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management -Virtualization of CPU, Memory and I/O devices - virtual Clusters and Resource Management -Virtualization for data center automation Durit II CLOUD PLATFORM ARCHITECTURE 12 Cloud Computing: Definition, Characteristics - Cloud Architecture patform, software- A Generic Cloud Architecture Design Layered cloud Architecture patform, software- Architectural Design Challenges 9 UNIT III AWS CoLOUD PLATFO						6		
Virtualization -Management Virtualization - Hardware Maximization - Architectures Virtualization Management - Storage Virtualization - Network Virtualization Implementation levels of virtualization virtualization storage Virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management -Virtualization for data center automation 12 Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, platform, software- A Generic Cloud Architecture Design - Layered cloud Architectural Development - Architectural Design Challenges 9 UNIT III AWS CLOUD PLATFORM - IAAS 9 Amazon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS Code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage 9 Windows Azure: Orthows Azure: Bestrices- REST API- Blops 9 UNIT IV PAGGRAMMING MODEL 9 Introduction Totation, Thread Programming, Task Programming and Map-Reduce Application 9	Basics of	Virtual Machines - Process Virtual Machines - System Virt	ual I	Mac	hine	s -		
Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, platform, software- A Generic Cloud Architecture Design - Layered cloud Architectural Development - Architectural Design Challenges UNIT III AWS CLOUD PLATFORM – IAAS 9 Amazon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS Code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage UNIT IV PAAS CLOUD PLATFORM 9 Windows Azure: Origin of Windows Azure, Features, The Fabric Controller 3 First Cloud APP in Windows Azure- Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops UNIT V PROGRAMMING MODEL 9 Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Developing Map Reduce Programming in Aneka TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application	Emulation - Interpretation - Binary Translation - Taxonomy of Virtual Machines. Virtualization - Management Virtualization - Hardware Maximization - Architectures - Virtualization Management - Storage Virtualization - Network Virtualization- Implementation levels of virtualization - virtualization structure -virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management -Virtualization for data center automation							
hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, platform, software- A Generic Cloud Architecture Design - Layered cloud Architectural Development -Architectural Design Challenges UNIT III AWS CLOUD PLATFORM - IAAS 9 Amazon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage UNIT IV PAAS CLOUD PLATFORM 9 Windows Azure: Origin of Windows Azure, Features, The Fabric Controller 3 First Cloud APP in Windows Azure: Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops UNIT V PROGRAMMING MODEL 9 Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Developing Map Reduce Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application	•		nuh	lia	nnin			
Development -Architectural Design Challenges UNIT III AWS CLOUD PLATFORM – IAAS 9 Amazon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS Code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage 9 UNIT IV PAAS CLOUD PLATFORM 9 Windows Azure: Origin of Windows Azure, Features, The Fabric Controller 3 First Cloud APP in Windows Azure: Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops 9 UNIT V PROGRAMMING MODEL 9 Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Developing Map Reduce Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka TOTAL: 45 PERIODS CO1: Describe the concepts of virtualization in the cloud computing CO2: CO2: Explain the architecture, infrastructure and delivery models of cloud computing C	hybrid, com	munity - Categories of cloud computing: Everything as a service	: In	frast	ruct	ure,		
UNIT IIIAWS CLOUD PLATFORM - IAAS9Amazon Web Services:AWS Infrastructure- AWS API- AWS Management Console - Settingup AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Servicefor Kubernetes- AWS Developer Tools:AWS Code Commit, AWS Code Build, AWS CodeDeploy, AWS Code Pipeline, AWS code Star - AWS Management Tools:Cloud Watch, AWSAuto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage9UNIT IVPAAS CLOUD PLATFORM9Windows Azure:Origin of Windows Azure, Features, The Fabric Controller 3 First Cloud APPin Windows Azure:Service Model and Managing Services: Definition and Configuration,Service runtime API- Windows Azure Developer Portal- Service Management API- Windows9Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions,9Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions,9Introduction Tentative Platform, Thread Programming, Task Programming and Map-Reduce9COURSE OUTCOMES:TOTAL: 45 PERIODSCOURSE OUTCOMES:CO1:Describe the concepts of virtualization in the cloud computingCO2:Explain the architecture, infrastructure and delivery models of cloud computingCO3:Develop the Cloud Application in AWS platformCO4:Apply the concepts of Windows Azure to design Cloud Application	· ·	с .	u n	i cin		11 ai		
Amazon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS Code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage UNIT IVPAAS CLOUD PLATFORM9Windows Azure: Origin of Windows Azure, Features, The Fabric Controller 3 First Cloud APP in Windows Azure- Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops9UNIT VPROGRAMMING MODEL9Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Developing Map Reduce Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in AnekaTOTAL: 45 PERIODSCOURSE OUTCOMES: At the end of the course, the students will be able to: CO1:Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platformCO3: Apply the concepts of Windows Azure to design Cloud Application						9		
up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS Code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage UNIT IV PAAS CLOUD PLATFORM 9 Windows Azure: Origin of Windows Azure, Features, The Fabric Controller 3 First Cloud APP in Windows Azure: Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops UNIT V PROGRAMMING MODEL 9 Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Developing Map Reduce Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application			onse	ole -	Set	-		
for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS Code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage UNIT IV PAAS CLOUD PLATFORM 9 Windows Azure: Origin of Windows Azure, Features, The Fabric Controller 3 First Cloud APP in Windows Azure- Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops UNIT V PROGRAMMING MODEL 9 Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Developing Map Reduce Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application		6				<u> </u>		
Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage 9 UNIT IV PAAS CLOUD PLATFORM 9 Windows Azure: Origin of Windows Azure, Features, The Fabric Controller 3 First Cloud APP in Windows Azure- Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops UNIT V PROGRAMMING MODEL 9 Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Developing Map Reduce Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application <td></td> <td></td> <th></th> <th></th> <td></td> <td></td>								
UNIT IVPAAS CLOUD PLATFORM9Windows Azure: Origin of Windows Azure, Features, The Fabric Controller 3 First Cloud APPin Windows Azure: Service Model and Managing Services: Definition and Configuration,Service runtime API- Windows Azure Developer Portal- Service Management API- WindowsAzure Storage Characteristics-Storage Services- REST API- BlopsUNIT VPROGRAMMING MODELIntroduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions,specifying input and output parameters, configuring and running a job 3Developing Map ReduceApplications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: CloudApplicationTentative Platform, Thread Programming, Task Programming and Map-ReduceProgramming in AnekaTOTAL: 45 PERIODSCOURSE OUTCOMES:At the end of the course, the students will be able to:CO1:Describe the concepts of virtualization in the cloud computingCO2:Explain the architecture, infrastructure and delivery models of cloud computingCO3:Develop the Cloud Application in AWS platformCO4:Apply the concepts of Windows Azure to design Cloud Application	Deploy, AW	/S Code Pipeline, AWS code Star - AWS Management Tools: Clou	id W	/atcl	n, A	WS		
Windows Azure: Origin of Windows Azure, Features, The Fabric Controller 3 First Cloud APP in Windows Azure: Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops UNIT V PROGRAMMING MODEL Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Developing Map Reduce Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application			e Ma	nage	e	-		
in Windows Azure- Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops UNIT V PROGRAMMING MODEL 9 Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Developing Map Reduce Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application	UNIT IV	PAAS CLOUD PLATFORM				9		
Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops UNIT V PROGRAMMING MODEL 9 Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Developing Map Reduce Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application								
Azure Storage Characteristics-Storage Services- REST API- Blops 9 UNIT V PROGRAMMING MODEL 9 Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Developing Map Reduce Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO4: Apply the concepts of Windows Azure to design Cloud Application		5 5		<u> </u>				
UNIT V PROGRAMMING MODEL 9 Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Developing Map Reduce Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka 9 COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO4: Apply the concepts of Windows Azure to design Cloud Application								
Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job 3Developing Map Reduce Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application						0		
specifying input and output parameters, configuring and running a job 3Developing Map Reduce Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application			1	C		-		
Applications - Design of Hadoop file system 3Setting up Hadoop Cluster- Aneka: Cloud Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application								
Application Tentative Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application								
Programming in Aneka TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application								
TOTAL: 45 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application			lu n	nap-	·Ncu	uce		
COURSE OUTCOMES:At the end of the course, the students will be able to:CO1:Describe the concepts of virtualization in the cloud computingCO2:Explain the architecture, infrastructure and delivery models of cloud computingCO3:Develop the Cloud Application in AWS platformCO4:Apply the concepts of Windows Azure to design Cloud Application	Tiogrammin		: 45	PE	RIO	DS		
At the end of the course, the students will be able to:CO1:Describe the concepts of virtualization in the cloud computingCO2:Explain the architecture, infrastructure and delivery models of cloud computingCO3:Develop the Cloud Application in AWS platformCO4:Apply the concepts of Windows Azure to design Cloud Application	COURSE (10			20		
 CO1: Describe the concepts of virtualization in the cloud computing CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application 								
 CO2: Explain the architecture, infrastructure and delivery models of cloud computing CO3: Develop the Cloud Application in AWS platform CO4: Apply the concepts of Windows Azure to design Cloud Application 		,						
CO3:Develop the Cloud Application in AWS platformCO4:Apply the concepts of Windows Azure to design Cloud Application								
CO4: Apply the concepts of Windows Azure to design Cloud Application								
UDJ, T DEVELOP SELVICES USING VALIOUS CLOUD COMPUTING PLOGRAMMINING MODELS		evelop services using various Cloud computing programming models	5					

REFI	ERENCES:
1.	Rajkumar Buyya, Christian Vacchiola, S.ThamaraiSelvi, Mastering Cloud Computing,
	MCGrawHill Education (India) Pvt. Ltd., 2013.
2.	Raoul Alongi, AWS: The Most Complete Guide to Amazon Web Service from Beginner
	to Advanced Level, Amazon Asia- Pacific Holdings Private Limited, 2019.
3.	Bernard Golden, Amazon Web Service for Dummies, John Wiley & Sons, 2013.
4.	Sriram Krishnan, Programming: Windows Azure, O'Reilly, 2010.
5.	Tom White, "Hadoop: The Definitive Guide", Yahoo Press, 2012

Course	Programme Outcomes							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	-	3	2	1		
CO2	-	-	-	2	2	1		
CO3	-	-	2	1	3	1		
CO4	2	1	1	1	3	1		
CO5	2	-	3	2	2	1		
CO	2	1	2	2	2	1		

CP22114	WIRELESS COMMUNICATIONS	L	Τ	P	С			
		3	0	0	3			
COURSEOBJECTIVES:								
To understand the basic concepts in cellular communication								
• To learn the characteristics of wireless channels								
• To understand the impact of digital modulation techniques in fading								
• To get exposed to diversity techniques in wireless communication								
To acquire knowledge in multicarrier systems								
UNITI CELLULAR CONCEPTS								
Frequency Reuse - Channel Assignment Strategies - Handoff Strategies - Interference and system								
capacity- Co-Channel Interference- Adjacent Channel Interference - Trunking and Grade of								
service – Improving coverage & capacity in cellular systems-Cell Splitting- Sectoring Repeaters								
for Range Extension-Microcell Zone Concept.								
UNIT II THE WIRELESS CHANNEL								
Overview o	Overview of wireless systems - Physical modeling for wireless channels - Time and Frequency							
coherence - Statistical channel models - Capacity of wireless Channel- Capacity of Flat Fading								
Channel – Channel Side Information at Receiver – Channel Side Information at Transmitter and								
Receiver – Capacity comparisons – Capacity of Frequency Selective Fading channels.								
UNIT III	PERFORMANCE OF DIGITAL MODULATION OVER WIRE	ELE	SS		9			
	CHANNELS				•			
	e of flat fading and frequency selective fading - Impact on dig							
techniques - Error Proba	e of flat fading and frequency selective fading – Impact on dig Outage Probability– Average Probability of Error – Combined Outa bility – Doppler Spread – Inter symbol Interference.							
techniques - Error Proba	e of flat fading and frequency selective fading – Impact on dig Outage Probability– Average Probability of Error – Combined Outa							
techniques - Error Proba UNIT IV	e of flat fading and frequency selective fading – Impact on dig Outage Probability– Average Probability of Error – Combined Outa bility – Doppler Spread – Inter symbol Interference.	ge a	nd 4	Aver	age 9			

	1
diversity - Transmitter Diversity - Channel known at Transmitter - Channel un	
Transmitter – The Alamouti Scheme– Transmit & Receive Diversity-MIMO Systems.	
UNIT V MULTICARRIER MODULATION	9
Data Transmission using Multiple Carriers - Multicarrier Modulation with Overla	apping Sub
channels – Mitigation of Subcarrier Fading – Discrete Implementation of Multicarrier M	Modulation
– Peak to average Power Ratio- Frequency and Timing offset.	
TOTAL: 45	PERIODS
COURSE OUTCOMES:	
At the end of the course, the students will be able to:	
CO1: Explain the basic concepts in cellular communication	
CO2: Describe the characteristics of wireless channels	
CO3: Apply multicarrier modulation in wireless communication	
CO4: Apply various diversity techniques in wireless communication	
CO5: Analyze the performance of the digital modulation techniques in fading char	nnels
REFERENCES:	
1. Theodore. S. Rappaport, "Wireless Communications: Principles and Practice	e", Second
Edition, Pearson Education, India, 2010.	
2. Andrea Goldsmith, "Wireless Communications", Cambridge University Press, 2	2005.
3. David Tse and Pramod Viswanath, "Fundamentals of Wireless Communication	on", Wiley
^{5.} Series in Telecommunications, Cambridge University Press, 2005.	
Saad Z. Asif, "5G Mobile Communications Concepts and Technologies" CR	RC press –
4. 2019.	
5. Keith Q. T. Zhang, "Wireless Communications: Principles, Theory and Meth	hodology",
^{5.} John Wiley & Sons, 2016.	

Course Programme Outcomes							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2	-	2	2	2	1	
CO2	2	-	2	2	2	1	
CO3	2	-	2	2	2	1	
CO4	2	-	2	2	2	1	
CO5	2	-	2	2	2	1	
СО	2	-	2	2	2	1	

PROFESSIONAL ELECTIVES II

CP2222	PRINCIPLES OF PROGRAMMING LANGUAGES	L	Т	Р	С
		3	0	0	3
COURSI	COBJECTIVES:				
• To	o understand and describe syntax and semantics of programming langua	lge			
• To	o understand data, data types, and basic statements				
• To	o understand call-return architecture and ways of implementing them				
• To	o understand object-orientation, concurrency, and event handling i	n p	rogra	amm	ing
la	nguages				
• To	develop programs in non-procedural programming paradigms				
UNITI	SYNTAX AND SEMANTICS				9
	of programming languages - Describing syntax - Context-free gramm				
-	- Describing semantics - Lexical analysis - Parsing - Recursive-desce	ent –	Bot	tom	· up
parsing					
UNIT II	DATA, DATA TYPES, AND BASIC STATEMENTS				9
	Variables – Binding – Type checking – Scope – Scope rules – Lifeti			-	-
	– Primitive data types – Strings – Array types – Associative arrays –				
• •	es – Pointers and references – Arithmetic expressions – Overloaded o	-			• •
	ns – Relational and boolean expressions – Assignment statements				ode
UNIT III	nts – Control structures – Selection – Iterations – Branching – Guarded SUBPROGRAMS AND IMPLEMENTATIONS	stat	eme	nts	9
	ams – Design issues – Local referencing – Parameter passing – Overlo	ada	d m	tho	-
	nethods – Design issues for functions – Semantics of call and return				
	bprograms – Stack and dynamic local variables – Nested subprogram				
Dynamic		u 1115	D	TOUR	.5
UNIT IV					
	HANDLING				9
Object-or	ientation - Design issues for OOP languages - Implementation of	obj	ect-	orier	nted
	s - Concurrency - Semaphores - Monitors - Message passing - Thre				
level con	currency – Exception handling – Event handling				
UNIT V	FUNCTIONAL AND LOGIC PROGRAMMING LANGUAGE				9
	on to lambda calculus – Fundamentals of functional programmin				
	ning with Scheme – Programming with ML – Introduction to I	ogic	e an	d lo	ogic
programn	ning – Programming with Prolog – Multi-paradigm languages				
COUDO	TOTAL	.: 45	5 PE	RIO	DS
	COUTCOMES:				
	d of the course, the students will be able to:				
CO1:	Describe statements, syntax and semantics of programming languages				
CO2:	Explain the data types, control structures in programming languages				
CO3:	Apply object-oriented construct and subprogram concept				
	Implement concurrency and event handling programming constructs				
	Implement programs using different paradigms				
REFERE		d:+:	2.10	V 1 1.	
	bert W. Sebesta, "Concepts of Programming Languages", Eleventh E	aiti(on, A	4001	son
	esley, 2012. F. Clocksin and C. S. Mellish, "Programming in Prolog: Using the ISO	Stor	dar	1 " Г	ifth
2. W	r. Ciocksin and C. S. Wiemsn, rrogramming in rrolog. Using the ISO	Sial	iuai	л, г	11111

	Edition, Springer, 2003.
2	Michael L. Scott, "Programming Language Pragmatics", Fourth Edition, Morgan
5.	Kaufmann, 2009.
4.	R.Kent Dybvig, "The Scheme Programming Language", Fourth Edition, MIT Press, 2009.
5	Hridesh Rajan, "An Experiential Introduction to Principles of Programming Languages",
5.	MIT Press, 2022.

Course		Programme Outcomes					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	-	1	1	-	-	
CO2	1	-	1	1	-	-	
CO3	1	-	1	1	-	-	
CO4	1	-	1	2	-	-	
CO5	2	-	3	3	2	-	
СО	1	-	1	2	2	-	

Mapping of Course Outcomes to Programme Outcomes

CP22222	OPTIMIZATION TECHNIQUES AND APPLICATIONS	L	Т	Р	С
	OF HIMZATION TECHNIQUES AND ATTEICATIONS	3	0	0	<u> </u>
COURSEC	DBJECTIVES:	0	U	U	
• To impart in-depth knowledge on different advanced optimization techniques to solve					
	neering problems	mqu	105 1	.0 50	лче
Ű	inderstand the concept of multi-objective optimization and its applica	tion	c		
UNITI	FUNDAMENTALS OF OPTIMIZATION	uon	5		9
	- Classification of optimization problems - Unconstrained an	h	Con	etrai	-
	n – Optimality conditions - Classical Optimization techniques - Linear				
	ng - Quadratic programming - Mixed integer programming - Integer				
	Advantages of intelligent techniques over classical optimization techn			500	nen
UNIT II	EVOLUTIONARY COMPUTATION TECHNIQUES	ique			9
	n nature - Fundamentals of Evolutionary algorithms - Principle of Ge	neti	c A1	onrit	
	nary Strategy and Evolutionary Programming - Genetic Operato			<u> </u>	
	and Mutation - Issues in GA implementation - Differential Evolution t				.011,
	PARTICLE SWARM OPTIMIZATION		190		9
	al principle - Velocity Updation - Parameter selection- hybrid approa	ches	s - h	vbrio	d of
	O – hybrid of EP and PSO - Binary, discrete and combinatorial PSO -				
	vergence issues – Fly Bee Algorithm.	1			
UNIT IV	ADDITIONAL OPTIMIZATION METHODS				9
Simulated a	annealing algorithm - Tabu search algorithm - Ant colony optimiz	atio	1 - I	Bact	eria
	otimization - Artificial immune system.				
UNIT V	MULTI OBJECTIVE OPTIMIZATION				9
Concept of	pareto optimality - Conventional approaches for MOO - Weig	ghte	d Si	ım	and
Constrained	l methods - Multiobjective GA - Fitness assignment - Multi-objective	PS	D-D	yna	mic
neighbourh	ood PSO - Vector evaluated PSO - Necessity for multi-criteria decision	on n	nakii	ng.	

	TOTAL: 45 PERIODS
COUR	SE OUTCOMES:
At the	end of the course, the students will be able to:
CO1:	Familiarize with the basic concept of optimization techniques
CO2 :	Explain the concept of different advanced optimization techniques and their applications
CO3:	Explain the concept of Multi-objective optimization and apply it for solving real world problems
CO4:	Apply Genetic Algorithm for solving engineering problems
CO5: Apply Swarm Optimization techniques for solving engineering problems	
REFE	RENCES:
	Kalyanmoy Deb, "Multi objective optimization using Evolutionary Algorithms", John Wiley and Sons, 2020.
	Kalyanmoy Deb, "Optimization for Engineering Design - Algorithms and Examples", Prentice Hall of India, 1995.
1 1	David Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning", Addison-Wesley, 1989.
// //	Kwang Y.Lee, Mohammed A.El Sharkawi, "Modern heuristic optimization techniques", John Wiley and Sons, 2008.
	Carlos A.Coello Coello, Gary B.Lamont, David A.Van Veldhuizen, "Evolutionary Algorithms for solving Multi Objective Problems", Second Edition, Springer, 2007.

Mapping of Course Outcomes to Programme Outcomes

Course		Programme Outcomes					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	2	2	1	1	-	
CO2	3	2	2	1	1	-	
CO3	3	2	2	1	1	-	
CO4	3	2	2	1	1	-	
CO5	3	2	2	1	1	-	
СО	3	2	2	1	1	-	

CP22223	NATURAL LANGUAGE PROCESSING TECHNIQUES	L	Т	Р	С
		3	0	0	3
COURSEC	DBJECTIVES:				
• To u	inderstand basics of linguistics, probability and statistics				
• To s	tudy statistical approaches to NLP and understand sequence labeling	5			
• To c	outline different parsing techniques associated with NLP				
• To e	explore semantics of words and semantic role labeling of sentences				
• To u	inderstand discourse analysis, question answering and chatbots				
UNITI	INTRODUCTION				9
Natural Lan	guage Processing - Components - Basics of Linguistics and Probabil	lity a	nd S	tatis	tics
-Words-Tol	cenization-Morphology-Finite State Automata				
UNIT II	STATISTICAL NLP AND SEQUENCE LABELING				9
N-grams an	nd Language models -Smoothing -Text classification- Naïve Ba	ayes	clas	sifie	r –

Evaluation - Vector Semantics - TF-IDF - Word2Vec- Evaluating Vector Models -SequenceLabeling - Part of Speech - Part of Speech Tagging -Named Entities -Named Entity TaggingUNIT IIICONTEXTUAL EMBEDDING9Constituency -Context Free Grammar -Lexicalized Grammars- CKY Parsing - Earley'salgorithm Evaluating Parsers -Partial Parsing - Dependency Relations- Dependency Parsing - Transition Based - Graph Based
UNIT III CONTEXTUAL EMBEDDING 9 Constituency -Context Free Grammar -Lexicalized Grammars- CKY Parsing - Earley's algorithm Evaluating Parsers -Partial Parsing – Dependency Relations- Dependency Parsing -
Constituency –Context Free Grammar –Lexicalized Grammars- CKY Parsing – Earley's algorithm Evaluating Parsers -Partial Parsing – Dependency Relations- Dependency Parsing -
algorithm Evaluating Parsers -Partial Parsing - Dependency Relations- Dependency Parsing -
Transition Based - Graph Based
UNIT IVCOMPUTATIONAL SEMANTICS9
Word Senses and WordNet - Word Sense Disambiguation - Semantic Role Labeling -
Proposition Bank- FrameNet- Selectional Restrictions - Information Extraction - Template Filling
UNIT VDISCOURSE ANALYSIS AND SPEECH PROCESSING9
Discourse Coherence - Discourse Structure Parsing - Centering and Entity Based Coherence -
Question Answering -Factoid Question Answering - Classical QA Models - Chatbots and
Dialogue systems – Frame-based Dialogue Systems – Dialogue–State Architecture
TOTAL: 45 PERIODS
COURSE OUTCOMES:
At the end of the course, the students will be able to:
CO1: Recall the basics of linguistics, probability and statistics associated with NLP
CO2: Demonstrate a sequence labeling problem for a given domain
CO3: Illustrate the parsing techniques associated with NLP
Build semantic processing tasks and simple document indexing and searching system
CO4: Using the concepts of NLP
CO5: Develop a simple chatbot using dialogue system concepts
REFERENCES:
Daniel Jurafsky and James H.Martin, "Speech and Language Processing: An Introduction
1. to Natural Language Processing, Computational Linguistics and Speech Recognition"
(Prentice Hall Series in Artificial Intelligence), 2020.
Christopher Manning "Foundations of Statistical Natural Language Processing" MIT
2. Press, 2009.
Nitin Indurkhya, Fred J. Damerau, "Handbook of Natural Language Processing", Second
3. edition, Chapman & Hall/CRC: Machine Learning & Pattern Recognition, Hardcover,
2010.
Deepti Chopra, Nisheeth Joshi, "Mastering Natural Language Processing with Python",
4. Packt Publishing Limited, 2016.
Samuel Burns "Natural Language Processing: A Quick Introduction to NLP with Python
5. and NLTK, 2019.

Course		Programme Outcomes					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	2	2	1	1	-	
CO2	3	2	2	1	1	-	
CO3	3	2	2	1	1	_	
CO4	3	2	2	1	1	-	
CO5	3	2	2	1	1	-	
СО	3	2	2	1	1	-	

CP22224	GPU COMPUTING	L	Τ	P	С
~ ~ ~ ~ ~ ~ ~		3	0	0	3
	EOBJECTIVES:				
• Te	o understand the basics of GPU architectures				
• To	o understand GPU Program Partitioning				
• Te	o write programs for massively parallel processors				
• Te	o understand the issues in mapping algorithms for GPUs				
• Te	o introduce different GPU programming models				
UNITI	GPU ARCHITECTURE				9
Evolution	of GPU architectures - Understanding Parallelism with GPU	$-T_{2}$	pica	al C	BPU
	ure - CUDA Hardware Overview –Setting up CUDA- Threads, Block				
Schedulir	g - Memory Handling with CUDA: Shared Memory, Global Me	emor	у, С	Cons	tant
Memory	and Texture Memory.				
UNIT II	CUDA PROGRAMMING				9
Using CU	JDA - Multi GPU - Multi GPU Solutions - Optimizing CUDA Applic	catio	ns: 1	Prob	lem
Decompo	sition, Memory Considerations, Transfers, Thread Usage, Resource Co	nten	tion	s.	
UNIT III	PROGRAMMING ISSUES				9
Common	Problems: CUDA Error Handling, Parallel Programming Issues, S	Sync	hror	nizat	ion,
Algorithm	nic Issues, Finding and Avoiding Errors.	-			
UNIT IV	OPENCL BASICS				9
OpenCL	Standard – Kernels – Host Device Interaction – Execution Environ	ment	t – 1	Mem	lory
Model –	Basic OpenCL Examples.				-
UNIT V	ALGORITHMS ON GPU				9
Parallel	Patterns: Convolution, Prefix Sum, Sparse Matrix - Matrix M	Aulti	plic	atior	ı –
Programm	ning- Heterogeneous Cluster.				
	ΤΟΤΑΙ	ב : 4 5	5 PE	RIC	DDS
COURS	E OUTCOMES:				
At the en	d of the course, the students will be able to:				
CO1:	Explain the basics of GPU Architecture				
CO2:	Illustrate the process of optimizing CUDA applications				
CO3:	Describe the issues in GPU programming				
	Implement programs using OpenCL				
	Implement efficient algorithms in GPUs for common application kerne	els			
REFERE					
	ane Cook, CUDA Programming: A Developer's Guide to Parallel Comp	utin	g wit	h Gl	PUs
	pplications of GPU Computing), First Edition, Morgan Kaufmann, 201				
	wid R. Kaeli, Perhaad Mistry, Dana Schaa, Dong Ping Zhang, Heteroger		s coi	mpu	ting
	th OpenCL, Third Edition, Morgan Kauffman, 2015.			P #	
Ni	cholas Wilt, CUDA Handbook: A Comprehensive Guide to GPU	J Pr	ogra	mm	ing.
1	Idison - Wesley, 2013.		- 0- 0		0'
Jas	on Sanders, Edward Kandrot, CUDA by Example: An Introduction to	Gen	eral	Purr	ose
4	PU Programming, Addison - Wesley, 2010.	2.011			
Dg	vid B. Kirk, Wenmei W. Hwu, Programming Massively Parallel Proces	ssor	5 - A	Har	nds-
	Approach, Third Edition, Morgan Kaufmann, 2016.		, 11		
511					

Course		Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	1	2	1	3	1				
CO2	2	1	3	2	3	1				
CO3	2	1	3	2	3	1				
CO4	2	1	3	2	3	1				
CO5	2	1	3	2	3	1				
СО	2	1	3	2	3	1				

3-High, 2- Medium, 1-Low

PROFESSIONAL ELECTIVES III

CP22231	PERFORMANCE ANALYSIS OF COMPUTER SYSTEMS	L	Т	Р	С
		3	0	0	3
COURSEC	DBJECTIVES:				
• To	understand the mathematical foundations needed for performanc	e ev	valua	ation	of
	puter systems				
 Τοι 	inderstand the metrics used for performance evaluation				
 Τοι 	inderstand the analytical modeling of computer systems				
• To (enable the students to develop new queuing analysis for both simp	ole a	nd c	comp	olex
syste	ems				
• To	appreciate the use of smart scheduling and introduce the studen	ts t	o ar	nalyt	ical
tech	niques for evaluating scheduling policies				
UNITI	OVERVIEW OF PERFORMANCE EVALUATION				9
	erformance Evaluation in Computer Systems - Overview of Perform				
	Introduction to Queuing - Probability Review - Generating Rando				
	- Sample Paths, Convergence and Averages - Little's Law and other O	pera	tion	al La	aws
	ion for Closed Systems.				
UNIT II	MARKOV CHAINS AND SIMPLE QUEUES	~			9
	me Markov Chains – Ergodicity Theory – Real World Examples – G	300§	gle, .	Aloh	ia –
	o Continuous-Time Markov Chain – M/M/1.				
	MULTI-SERVER AND MULTI-QUEUE SYSTEMS				9
	ms: $M/M/k$ and $M/M/k/k$ – Capacity Provisioning for Server				
	y and Burke's Theorem – Networks of Queues and Jackson Product	For	m –	Clas	sed
	Networks of Queues.				9
	REAL-WORLD WORKLOADS	1	<u>. M</u>	that	-
	of Real-world Workloads – Phase-Type Distributions and Matrix-Ala with Time-Sharing Servers – $M/G/1$ Queue and the Inspection I				
	Policies for Server Farms.		JOX	- 1	ask
UNIT V	SMART SCHEDULING IN THE M/G/1				9
	e Metrics – Scheduling Non-Preemptive and Preemptive Non-Size-	Rase	d P	olici	-
	Non-Preemptive and Preemptive Size-Based Policies – Schedulin				
Fairness.	The first for the free public bused for the beneduling	3	210	- 1	
	ΤΟΤΑΙ	: 45	PE	RIO	DS
					- ~

COU	RSE OUTCOMES:
At the	end of the course, the students will be able to:
CO1	Describe the mathematical foundations needed for performance evaluation of computer
	• systems
CO2	
CO3	: Explain the queuing analysis for both simple and complex systems
CO4	Predict and forecast workload and performance parameters of a given computer system
CO5	: Use smart scheduling and analytical techniques for evaluating scheduling policies
REFE	RENCES:
1.	K. S. Trivedi, "Probability and Statistics with Reliability, Queueing and Computer Science
	Applications", Second Edition, John Wiley and Sons, 2016.
2.	Krishna Kant, "Introduction to Computer System Performance Evaluation", McGraw-Hill,
2.	1992.
3.	Lieven Eeckhout, Computer Architecture Performance Evaluation Methods, Morgan and
5.	Claypool Publishers, 2010.
4.	Paul J. Fortier and Howard E. Michel, "Computer Systems Performance Evaluation and
	Prediction", Elsevier, 2003.
5.	Raj Jain, "The Art of Computer Systems Performance Analysis: Techniques for
5.	Experimental Design, Measurement, Simulation and Modeling, Wiley-Interscience, 1991.

Mapping of Course Outcomes to Programme Outcomes

Course		Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	-	2	2	-	1	2				
CO2	-	2	2	1	1	2				
CO3	-	2	2	1	1	2				
CO4	-	2	2	1	1	2				
CO5	-	2	2	1	1	2				
СО	-	2	2	1	1	2				

CP22232	DATA INTENSIVE COMPUTING	L	Т	Р	C
		3	0	0	3
COURSEO	BJECTIVES:				
• Tou	nderstand the basics of the various database systems including databa	ases	for	big (lata
• To le	earn about the architecture of data intensive computing				
To le	earn about parallel processing for data intensive computing				
To le	earn about Security in Data Intensive Computing Systems				
To le	earn about the applications that involves Data intensive computing				
UNITI	INTRODUCTION				9
Introduction	to Distributed systems - Databases Vs. File Systems - I	Dist	ribu	ted	file
systems(HD	FS) – Distributed Machine-Learning System - Data Parallelism –	Chai	racte	risti	cs -
Hadoop –Ez	kecution Engines -Map Reduce- Distributed Storage System for Sta	ruct	ured	Dat	ta —
NoSQL data	abases -Casandra, Mongo DB-Developing a Distributed Application				

UNIT	II ARCHITECTURES AND SYSTEMS	9
High	performance Network Architectures for Data intensive Computing – Architecting D)ata
-	ive Software systems – ECL/HPCC: A Unified approach to Big Data – Scalable storage	
	ntensive Computing - Computation and Storage of scientific data sets in cloud- Stream D	
	l - Architecture for Data Stream Management-Stream Queries –Sampling Data in a Stre	
	ng Streams	
UNIT	TII TECHNOLOGIES AND TECHNIQUES	9
Load	balancing techniques for Data Intensive computing - Resource Management for c	lata
	ive Clouds - SALT - Parallel Processing, Multiprocessors and Virtualization in D	
intens	ive Computing - Challenges in Data Intensive Analysis and Visualization - Large-Scale D)ata
Analy	tics Using Ensemble Clustering - Ensemble Feature Ranking Methods for Data Intens	sive
Comp	outing Application - Record Linkage Methodology and Applications- Semantic Wrapper	
	VIV SECURITY	9
Securi	ity in Data Intensive Computing Systems - Data Security and Privacy in Data-Intens	sive
Super	computing Clusters - Information Security in Large Scale Distributed Systems - Privacy	and
Securi	ity Requirements of Data Intensive Applications in Clouds	
UNIT	V APPLICATIONS AND FUTURE TRENDS	9
Cloud	and Grid Computing for Data Intensive Applications -Scientific Application	s -
Bioinf	formatics Large Science Discoveries - Climate Change - Environment - Energy	у-
Comn	nercial Applications - Future trends in Data Intensive Computing	
	TOTAL: 45 PERIO	DS
COU	RSE OUTCOMES:	
At the	e end of the course, the students will be able to:	
CO	1: Describe the basics of the various database systems including databases for big data	l
CO2	2: Suggest appropriate architecture for data intensive computing systems	
CO3	3: Identify parallel processing techniques for data intensive computing	
CO4	applications	sive
COS	5: Design applications that involve data intensive computing	
REFF	ERENCES:	
1.	Tom White, "Hadoop: The Definitive Guide", O'Reilly Media. October 2010.	
2.	Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom, "Database Systems: "Complete Book", Pearson, 2013.	Гhe
3.	Furht, Borko, Escalante, Armando, "Handbook of Data Intensive Computing", Sprin 2011.	ger
4.	Ian Gorton, Deborah k. Gracio, "Data-Intensive Computing Architectures, Algorithms, Applications", Cambridge University Press 2013.	and
	ADDITION CANDING CONVENTIVE LESS /ULY	
	Mamta Mittal, Valentina E. Balas, D. Jude Hemanth, Raghvendra Kumar, & Data Intens	ivo

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	-	2	3	1			
CO2	1	-	-	2	2	1			
CO3	1	-	-	2	2	2			
CO4	1	-	_	2	1	1			

CO5	1	-	-	3	2	1
СО	1	-	-	2	2	1

CP2223	3 INTERNET OF THINGS	L	T	P	С
GOUDO		3	0	0	3
	EOBJECTIVES:				
	o understand the fundamentals of IoT				
	gain knowledge on how IoT is related with other enabling technologie	S			
	o understand the IoT Reference architecture				
	b learn the basics of different IoT protocols				
• T	gain experience in Raspberry PI and experiment simple IoT applicatio	n or	ı it		
UNITI	ΙΝΤRODUCTION ΤΟ ΙοΤ				9
Deploym	f Things- Physical Design- Logical Design- IoT Enabling Technologies ent Templates - Domain Specific IoTs - IoT and M2M - IoT System M				
	IF-YANG- IoT Platforms Design Methodology				0
UNIT II	ARCHITECTURE	<u> </u>			9
	gh-level architecture-Reference model and architecture - IoT re- on model – Functional model – Communication model- IoT reference d				
-	PROTOCOLS				9
	.15.4 -BACNet Protocol - Z-Wave - ModBus - ZigBee - 6LoWPAN -	CoA	ΑP –	MC	TT
	IOT PROJECTS ON RASPBERRY PI				9
Building	IOT with RASPBERRY PI- IoT Device -Building blocks – Programmi	ng F	laspl	berry	/ PI
-	on -Creating the sensor project - Preparing Raspberry Pi - Clayster libra	-	-	-	
	g with the hardware - Interfacing the hardware- Internal representation				
- Persistin	g data - External representation of sensor values - Exporting sensor dat	a – 7	Ardu	iino	
UNIT V					9
IaaS- Paa	S – SaaS - Sensor-Cloud for IoT - Fog-Computing applications –Tow	ards	a C	Greei	ner-
IoT –Sec	arity in IoT				
	TOTAL	.: 45	PE	RIO	DS
	E OUTCOMES:				
At the en	d of the course, the students will be able to:				
CO1:	Describe the basics and levels of IoT				
CO2:	Outline the functions of different components used in building IoT				
CO3:	Interpret the working of various enabling technologies				
CO4:	Develop simple real time projects in IoT				
CO5:	Analyze the performances of protocols used by IoT				
REFERE	INCES:				
¹ . Ur	shdeep Bahga, Vijay Madisetti, "Internet of Things – A hands iversities Press, 2015.	-on	app	oroad	ch",
	ter Waher, "Learning Internet of Things", Packt Publishing, 2015.				
3. Da	h Ho Iler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis, Karnouskos, S vid Boyle, "From Machine-to-Machine to the Internet of Things - Introc ge of Intelligence", Elsevier, 2014.	lucti	on to	o a N	lew
	ivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of plications and Protocols", Wiley, 2012.	Th	ings	-]	Key

5	Sudip Misra,	Subhadeep	Sarkar,	Subarna	Chatterjee,	"Sensors,	Cloud	and	Fog:	The
5.	enabling Tech	nologies for	the Inter	rnet of Th	ings", CRC	Press, 2019	9.			

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	1	3	2	1	1			
CO2	3	1	3	2	1	1			
CO3	3	1	3	2	1	1			
CO4	3	3	3	3	3	3			
CO5	3	1	3	2	1	2			
СО	3	1	3	2	1	2			

CP22234	SOFTWARE QUALITY ASSURANCE	L	Τ	Р	С		
		3	0	0	3		
COURSE	DBJECTIVES:						
• Be exposed to the software quality factors, Quality Assurance (SQA) architecture							
and	SQA components						
• Unc	lerstand the integration of SQA components into the project lif	e cy	cle				
• Be	familiar with the software quality infrastructure						
• Be	exposed to the management components of software quality						
• Be	familiar with the Quality standards, certifications and assessme	ents					
UNITI	INTRODUCTION TO SOFTWARE QUALITY &				9		
	ARCHITECTURE						
	Software quality - Software quality assurance (SQA) - So			-	•		
	cCall's quality model – SQA system components – Pre p	oroje	ect	qual	ity		
	s – Development and quality plans.						
UNIT II	SQA COMPONENTS AND PROJECT LIFE CYCLE				9		
	quality activities in the project life cycle - Reviews - Softw						
- •	software maintenance components - Quality assurance	fo	r e	xter	nal		
<u> </u>	s contribution – CASE tools for software quality Management.				-		
	SOFTWARE QUALITY INFRASTRUCTURE				9		
	and work instructions - Supporting quality devices - Staf			<u> </u>			
	n - Corrective and preventive actions – Configuration managem		-Sc	oftw	are		
Ũ	trol – Configuration management audit -Documentation contro)l.			0		
UNIT IV		•.			9		
• •	cess control – Software quality metrics – Cost of software qual	-					
model	t model – Extended model – Application and Problems in appl	Icati	on (лС	ost		
UNIT V	STANDARDS, CERTIFICATIONS & ASSESSMENTS				9		
	nagement standards – ISO 9001 and ISO 9000-3 –Capability M	otur		Ind	-		
-	d CMMI assessment methodologies - Bootstrap methodology –						
	oject process standards – Organization of Quality Assuran						
	t in SQA – SQA units and other actors in SQA systems.		1		01		
manageme	TOTAL:	451	PER		DS		
	101112.	10 1					

COURS	E OUTCOMES:								
At the en	At the end of the course, the students will be able to:								
CO1:	Utilize the concepts of SQA in software development life cycle								
CO2:	Demonstrate their capability to adopt quality standards								
CO3:	Describe the software quality infrastructure								
CO4:	Apply the concepts in preparing the quality plan & documents								
CO5:	Analyze whether the product meets company's quality standards and client's								
0.05.	expectations and demands								
REFER	ENCES:								
1.	Daniel Galin, "Software Quality Assurance", Pearson Publication, 2009.								
2.	Kshirasagar Naim and Priyadarshi Tripathy," Software Testing and Quality								
2.	Assurance Theory and Practice", John Wiley & Sons Inc., 2008.								
3.	Alan C. Gillies, "Software Quality: Theory and Management", International								
5.	Thomson Computer Press, 2011.								
4.	Mordechai Ben-Menachem, "Software Quality: Producing Practical Consistent								
т.	Software", International Thompson Computer Press, 2014.								
5.	Jeff Tian, John Wiley & Sons, "Software Quality Engineering: Testing, Quality								
5.	Assurance, and Quantifiable Improvement", Inc., Hoboken, New Jersey. 2005.								

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	2	-	-	-			
CO2	2	2	2	2	-	-			
CO3	2	2	2	2	-	-			
CO4	2	2	2	2	-	-			
CO5	1	2	2	1	-	-			
СО	2	2	2	3	-	-			

PROFESSIONAL ELECTIVES IV

CP22341	ADVANCED DIGITAL IMAGE PROCESSING	L	Τ	Р	С
COUDCE		3	0	0	3
	DBJECTIVES:				
	understand the essentials of digital image processing.				
	know about various segmentation techniques for image analysis.				
	get an understanding of various feature extraction techniques for imag	ge an	alys	1 S.	
	understand the concepts of image registration and fusion.				
	get an understanding of 3D image visualization.				•
	REVIEW OF DIGITAL IMAGE PROCESSING	1 4	<u>.</u> .	М	9
-	gital image processing-Elements of visual perception- brightness ad	-			ach
	. Image enhancement in spatial and frequency domain, Histogram equ	ializ	atioi	1	
UNIT II	SEGMENTATION				9
-	tion, Thresholding, Region growing, Fuzzy clustering, Watershed al	-			
	dels, Texture feature based segmentation, Graph based segmentation	, Wa	avel	et ba	.sed
Segmentati	on - Applications of image segmentation.				
UNIT III	FEATURE EXTRACTION				9
First and se	cond order edge detection operators, Phase congruency, Localized fea	ture	exti	acti	on -
detecting in	mage curvature, shape features, Hough transform, shape skeletoniz	atior	n, Bo	ound	lary
descriptors	, Moments, Texture descriptors- Autocorrelation, Co-occurrence feat	ures	, Ru	ınler	igth
-	actal model based features, Gabor filter, wavelet features.				-
UNIT IV	REGISTRATION AND IMAGE FUSION				9
Registratio	n - Preprocessing, Feature selection - points, lines, regions and te	mpla	ates	Feat	ure
	ence - Point pattern matching, Line matching, Region matching, Ten				
_	ation functions - Similarity transformation and Affine Transformation	-			-
	ighbour and Cubic Splines. Image Fusion - Overview of image fusion			-	-
	sed fusion -region based fusion.	JII, 1		I I U D	1011,
UNIT V	3D IMAGE VISUALIZATION				9
	3D Data sets, Slicing the Data set, Arbitrary section planes, Th			f_{co}	-
	display, Stereo Viewing, Ray tracing, Reflection, Surfaces, Mul	upi	e co	mee	lea
surfaces, Ir	nage processing in 3D, Measurements on 3D images				<u> </u>
COUDCE	TOTAL	.: 45) PE	RIO	DS
	OUTCOMES:				
	of the course, the students will be able to:				
	Explain the essentials of digital image processing.				
	Describe various segmentation techniques for image analysis.				
	Outline the various feature extraction techniques for image analysis.				
CO4:	Discuss the concepts of image registration and fusion.				
CO5: I	lustrate 3D image visualization.				
REFEREN	ICES:				
	el C. Gonzalez, Richard E. Woods, Digital Image Processing', Son Education, Inc., 2004.	Seco	ond	Editi	ion,

r	Mark Nixon, Alberto Aguado, "Feature Extraction and Image Processing", Academic
۷.	Press, 2008.
2	Ardeshir Goshtasby, "2D and 3D Image registration for Medical, Remote Sensing and Industrial Applications", John Wiley and Sons, 2005.
5.	Industrial Applications", John Wiley and Sons, 2005.
4.	John C.Russ, "The Image Processing Handbook", CRC Press, 2007.
5	Rick S.Blum, Zheng Liu, "Multisensor image fusion and its Applications", Taylor &
5.	Francis, 2006.

	Maj	oping of	Course	Outcomes	to Pro	gramme	e Outcomes	
~				D		A 4		

Mapping of Course Outcomes to Programme Outcomes										
Course		P	rogramme	Outcomes						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	2	2	-	-	-				
CO2	2	2	2	-	2	1				
CO3	2	2	2	-	2	1				
CO4	2	1	2	-	3	3				
CO5	2	1	2	-	3	3				
СО	2	2	2	-	2	1				

CP22342	INFORMATION RETRIEVAL TECHNIQUES	L	Т	Р	С
		3	0	0	3
COURSEC	BJECTIVES:				
• To	understand the basics of information retrieval with pertinence to n	nod	eling	g, qu	iery
ope	erations and indexing				
• To	get an understanding of machine learning techniques for text cla	assit	ficat	ion	and
clu	stering.				
• To	understand the various applications of information retrieval givin	ng e	emp	hasis	s to
mu	ltimedia IR, web search				
• To	get an understanding of machine learning techniques for text cla	assit	ficat	ion	and
clu	stering.				
• To	understand the concepts of digital libraries				
UNITI	INTRODUCTION: MOTIVATION				9
Basic Cor	cepts - Practical Issues - Retrieval Process - Architecture - Bool	ean	Ret	rieva	ıl –
Retrieval I	Evaluation – Open-Source IR Systems–History of Web Search – Web	Cha	racte	eristi	ics–
The impac	t of the web on IRIR Versus Web SearchComponents of a Search	n en	gine		
UNIT II	MODELING				9
and Chara	cterization of IR Models - Boolean Model - Vector Model - Ter	m V	Neig	ghtin	<u>g</u> –
Scoring an	nd Ranking -Language Models - Set Theoretic Models - Probabi	listi	c M	[ode]	ls –
Algebraic	Models – Structured Text Retrieval Models – Models for Browsing				
UNIT III	INDEXING				9
Static and	Dynamic Inverted Indices - Index Construction and Index Compress	ion.	Sea	rchi	1g -
Tentative	Sequential Searching and Pattern Matching. Query Operations -Que	ry I	Lang	uage	es –
Query Pro	cessing - Relevance Feedback and Query Expansion - Automatic Le	ocal	and	l Glo	obal
Analysis –	Measuring Effectiveness and Efficiency				

UNIT	IV EVALUATION AND PARALLEL INFORMATION RETRIEVAL 9
Effectiv	veness Measures – Statistics in Evaluation – Minimizing Adjudication Effect –
	ditional Effectiveness Measures – Measuring Efficiency – Efficiency Criteria –Queueing
	– Query Scheduling – Parallel Information Retrieval – Parallel Query Processing –
MapRe	duce.
UNIT Y	VSEARCHING THE WEB9
The W	eb –Structure of the Web –IR and web search – Static and Dynamic Ranking – Web
Crawlin	ng and Indexing – Link Analysis - XML Retrieval Multimedia IR: Models and Languages
– Index	ting and Searching Parallel and Distributed IR – Digital Libraries.
	TOTAL: 45 PERIODS
COUR	SE OUTCOMES:
At the	end of the course, the students will be able to:
CO1:	Explain the basic and advanced concepts of IR
CO2:	Describe the various information Retrieval models.
CO3:	Explain different indexing and query processing for IR.
CO4:	Demonstrate evaluation methods and parallel information retrieval.
CO5:	Apply indexing and searching on parallel and distributed IR.
REFE	RENCES:
1.	Christopher D. Manning, Prabhakar Raghavan, Hinrich Schutze, "Introduction to
1.]	Information Retrieval, Cambridge University Press, 2008.
2.	Ricardo Baeza - Yates, Berthier Ribeiro - Neto, "Modern Information Retrieval: The
(concepts and Technology behind Search, Second Edition, ACM Press Books, 2011.
	Stefan Buttcher, Charles L. A. Clarke, Gordon V. Cormack, "Information Retrieval
	Implementing and Evaluating Search Engines", The MIT Press Cambridge, Massachusetts
	London, England, 2016.
//	W. Bruce Croft, Donald Metzler, Trevor Strohman, "Search Engines: Information
	Retrieval in Practice", Pearson Education, Inc - 2015.
	Mark Levene, "An Introduction To Search Engines And Web Navigation", A John Wiley
	& Sons, Inc., Publication - 2010

Course	Programme Outcomes							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	2	-	-	-		
CO2	2	2	2	-	1	1		
CO3	2	2	2	-	1	1		
CO4	2	1	2	-	3	3		
CO5	2	1	2	-	3	3		
CO	2	2	2	-	2	1		

CP22	343		CC	DGNITIV	E CO	MPUT	ING				T	P	C 3
COUD	SEO	BJECTIV	FC.							3	0	0	3
		miliarize U		ovation C	Tanyas	to justif	v note	ntially	success	ful pro	duct	s	
•		arn various							success		uuet	5.	
		nderstand a			-	-			ive Cor	nnutin	σ		
		now about								npuun	5		
•		et into all a						mpum	iig				
UNITI		FOUNDA		-			-	n					9
		of Cogniti						-	ew der	eratio	n th	10 11	-
		systems, s											
-		on of cog	• •			-					-		
		ystems: Co	-						-		-		
-			-		-	•		-	-		-	-	
	-	ve system, ation servio		learning,	, пуро	uleses	genera	lion ai	liu scol	mg, Į	nese	man	OI
						COMO							9
UNIT Natura		NATURA guage Proc										anit	-
		antic web	-			-	•					-	
•		g knowledg		-				-			-		
-		and Ontol				-	-		-	-			
				wieuge i	epiesei	manon,	model	S 101 K	liowied	ige iej	nese	man	01
-		ion conside											
UNIT Relatio								Doolin	a with	hume	n aa	noro	9
		between	-	-	-	-	-		-		-		
		ng big data											
		streaming d		·	U								
		cognitive											
-	-	ities in adv		-	sing ac	ivanced	anary	tics to	create	value	, Im	pact	0
1		tools on a		-						<u>a</u>			
		BUSINES									to h		9
-	-	or change, a	-		-				-	-			
		ith a cogni	•			-	-			•	-		
		o plan for											
-		itions, mak									-	-	
		process of	-	-			-	-	-	-			
		e, defining t				the inter	ided us	ers and	i their a	tribute	es, qu	lesti	on
		g insights,	2	-		<u> </u>		<u>a</u>					
UNIT		APPLICA							o o mi ti	0 0-	·		9 fo
		cognitive											fo
		constituents			-		-	-					
		a foundat											
system	. star	ing with a	COUNTINE	e applicat	rion to	r nealth	loare	usino -	cognitiv	ve anr	nncat	ions	. t⁄

improv	ve health and wellness, using a cognitive application to enhance the electronic medical
record	Using cognitive application to improve clinical teaching
	TOTAL: 45 PERIODS
COUF	RSE OUTCOMES:
At the	end of the course, the students will be able to:
CO1	: Explain foundation of cognitive computing
CO2	: Illustrate natural language processing in cognitive systems
CO3	: Explain about big data and cognitive computing
CO4	: Discover the business implications of cognitive computing
CO5	: Examine applications of cognitive computing
REFE	RENCES:
1	Judith H Hurwitz, Marcia Kaufman, Adrian Bowles, "Cognitive computing and Big Data
	Analytics", Wiley, 2015
2.	Robert A. Wilson, Frank C. Keil, "The MIT Encyclopaedia of the Cognitive Science", The
۷.	MIT Press, 1999.

- Noah D. Goodman, Joshua B. Tenenbaum, "Probabilistic Models of Cognition", Second Edition, The ProbMods Contributors, 2016, https://probmods.org/.
 Bernadette Sharp, Florence Sedes, Wieslaw Lubaszewski, "Cognitive Approach to Natural
- 4. Bernadette Sharp, Florence Sedes, Wieslaw Lubaszewski, "Cognitive Approach to Natural Language Processing", Elsevier, 2017.
 - 5. Vishal Jain, Akash Tayal, Jaspreet Singh, Arun Solanki, "Cognitive Computing Systems Applications and Technological Advancements", 2021.

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	-	-	2	2	-			
CO2	-	-	-	2	2	2			
CO3	2	-	-	1	1	3			
CO4	1	-	-	1	3	1			
CO5	2	-	-	2	2	2			
СО	2	-	-	2	2	2			

CP22344	DATA VISUALIZATION TECHNIQUES	L	Τ	Р	С
		3	0	0	3
COURSE	DBJECTIVES:				
• To develo	p skills to both design and critique visualizations.				
• To introd	uce visual perception and core skills for visual analysis.				
• To under	stand technological advancements of data visualization				
• To under	stand various data visualization techniques				
• To under	stand the methodologies used to visualize large data sets				
UNITI	INTRODUCTION AND DATA FOUNDATION				9
Basics - Re	lationship between Visualization and Other Fields - The Visualizati	on Proc	ess -	Pse	udo
code Conv	entions - The Scatter plot. Data Foundation - Types of Data - S	tructure	e wit	hin	and
between Re	cords - Data Preprocessing - Data Sets				

UNIT I	I FOUNDATIONS FOR VISUALIZATION 9
Visualiz	ation stages - Semiology of Graphical Symbols - The Eight Visual Variables – Historical
Perspect	tive - Taxonomies - Experimental Semiotics based on Perception Gibson's Affordance
theory –	A Model of Perceptual Processing.
	IIVISUALIZATION TECHNIQUES9
Spatial	Data: One-Dimensional Data - Two-Dimensional Data - Three Dimensional Data -
Dynami	c Data - Combining Techniques. Geospatial Data: Visualizing Spatial Data - Visualization
of Point	Data - Visualization of Line Data - Visualization of Area Data - Other Issues in Geospatial
Data Vi	isualization Multivariate Data: Point-Based Techniques - Line-Based Techniques -
Region-	Based Techniques - Combinations of Techniques - Trees Displaying Hierarchical
Structur	es – Graphics and Networks- Displaying Arbitrary Graphs/Networks.
UNIT I	VINTERACTION CONCEPTS AND TECHNIQUES9
Space M Text Vis - A Uni Attribute	d Document Visualization: Introduction - Levels of Text Representations - The Vector Iodel - Single Document Visualizations -Document Collection Visualizations – Extended sualizations Interaction Concepts: Interaction Operators - Interaction Operands and Spaces fied Framework. Interaction Techniques: Screen Space - Object-Space –Data Space - e Space- Data Structure Space - Visualization Structure – Animating Transformations - ton Control.
1111 (PT1	
	7 RESEARCH DIRECTIONS IN VISUAL IZATIONS 9
UNIT V	RESEARCH DIRECTIONS IN VISUALIZATIONS 9 designing Visualizations – Problems in designing effective Visualizations- Issues of Data.
UNIT V Steps in Issues o	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware plications
UNIT V Steps in Issues o and App	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware plications TOTAL: 45 PERIODS
UNIT V Steps in Issues o and App COURS	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware blications TOTAL: 45 PERIODS SE OUTCOMES:
UNIT V Steps in Issues o and App COURS At the e	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware blications TOTAL: 45 PERIODS SE OUTCOMES: end of the course, the students will be able to:
UNIT V Steps in Issues o and App COURS	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware blications TOTAL: 45 PERIODS SE OUTCOMES: and of the course, the students will be able to: Visualize the objects in different dimensions.
UNIT V Steps in Issues o and App COURS At the e	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware blications TOTAL: 45 PERIODS SE OUTCOMES: and of the course, the students will be able to:
UNIT V Steps in Issues o and App COURS At the e CO1: CO2:	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware blications TOTAL: 45 PERIODS SE OUTCOMES: ond of the course, the students will be able to: Visualize the objects in different dimensions. Identify appropriate data visualization techniques given particular requirements
UNIT V Steps in Issues o and App COURS At the e CO1:	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware blications TOTAL: 45 PERIODS SE OUTCOMES: and of the course, the students will be able to: Visualize the objects in different dimensions. Identify appropriate data visualization techniques given particular requirements imposed by the data.
UNIT V Steps in Issues o and App COURS At the e CO1: CO2: CO3:	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware blications TOTAL: 45 PERIODS SE OUTCOMES: Ind of the course, the students will be able to: Visualize the objects in different dimensions. Identify appropriate data visualization techniques given particular requirements imposed by the data. Apply the visualization techniques in physical sciences, computer science, applied
UNIT V Steps in Issues o and App COURS At the e CO1: CO2: CO3: CO3:	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware blications TOTAL: 45 PERIODS SE OUTCOMES: md of the course, the students will be able to: Visualize the objects in different dimensions. Identify appropriate data visualization techniques given particular requirements imposed by the data. Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical sciences.
UNIT V Steps in Issues o and App COURS At the e CO1: CO2: CO3: CO3: CO4: CO5:	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware blications TOTAL: 45 PERIODS SE OUTCOMES: md of the course, the students will be able to: Visualize the objects in different dimensions. Identify appropriate data visualization techniques given particular requirements imposed by the data. Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical sciences. Apply the virtualization techniques for research projects. Design and process the data for Visualization.
UNIT V Steps in Issues o and App COURS At the e CO1: CO2: CO3: CO3: CO4: CO5: REFER	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware blications TOTAL: 45 PERIODS SE OUTCOMES: end of the course, the students will be able to: Visualize the objects in different dimensions. Identify appropriate data visualization techniques given particular requirements imposed by the data. Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical sciences. Apply the virtualization techniques for research projects. Design and process the data for Visualization. ENCES:
UNIT V Steps in Issues o and App COURS At the e CO1: CO2: CO3: CO4: CO5: REFER	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware blications TOTAL: 45 PERIODS SE OUTCOMES: and of the course, the students will be able to: Visualize the objects in different dimensions. Identify appropriate data visualization techniques given particular requirements imposed by the data. Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical sciences. Apply the virtualization techniques for research projects. Design and process the data for Visualization. ENCES: Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization
UNIT V Steps in Issues o and App COURS At the e CO1: CO2: CO3: CO3: CO4: CO5: REFER 1. M F	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware blications TOTAL: 45 PERIODS SE OUTCOMES: end of the course, the students will be able to: Visualize the objects in different dimensions. Identify appropriate data visualization techniques given particular requirements imposed by the data. Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical sciences. Apply the virtualization techniques for research projects. Design and process the data for Visualization. ENCES:
UNIT V Steps in Issues o and App COURS At the e CO1: CO2: CO3: CO4: CO5: REFER $1. \frac{N}{F}$ 2. C	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware olications TOTAL: 45 PERIODS SE OUTCOMES: and of the course, the students will be able to: Visualize the objects in different dimensions. Identify appropriate data visualization techniques given particular requirements imposed by the data. Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical sciences. Apply the virtualization techniques for research projects. Design and process the data for Visualization. ENCES: Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization oundations, Techniques, Applications", 2010. Colin Ware, "Information Visualization Perception for Design", Fourth Edition, Morgan Caufmann Publishers, 2021.
UNIT V Steps in Issues o and App COURS At the e CO1: CO2: CO3: CO3: CO4: CO5: REFER 1. N F 2. C K 3 R	designing Visualizations – Problems in designing effective Visualizations-Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware olications TOTAL: 45 PERIODS SE OUTCOMES: and of the course, the students will be able to: Visualize the objects in different dimensions. Identify appropriate data visualization techniques given particular requirements imposed by the data. Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical sciences. Apply the virtualization techniques for research projects. Design and process the data for Visualization. ENCES: Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization coundations, Techniques, Applications", 2010. Colin Ware, "Information Visualization Perception for Design", Fourth Edition, Morgan Caufmann Publishers, 2021. Cobert Spence "Information visualization – Design for interaction", Second Edition,
UNIT V Steps in Issues o and App COURS At the e CO1: CO2: CO3: CO4: CO5: REFER 1. N F 2. C K 3. P	designing Visualizations – Problems in designing effective Visualizations- Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware blications TOTAL: 45 PERIODS SE OUTCOMES: and of the course, the students will be able to: Visualize the objects in different dimensions. Identify appropriate data visualization techniques given particular requirements imposed by the data. Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical sciences. Apply the virtualization techniques for research projects. Design and process the data for Visualization. ENCES: Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization oundations, Techniques, Applications", 2010. Colin Ware, "Information Visualization Perception for Design", Fourth Edition, Morgan Caufmann Publishers, 2021. Cobert Spence "Information visualization – Design for interaction", Second Edition, earson Education, 2007.
UNIT V Steps in Issues o and App COURS At the e CO1: CO2: CO3: CO4: CO5: REFER 1. F 2. K 3. P 4.	designing Visualizations – Problems in designing effective Visualizations-Issues of Data. f Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware olications TOTAL: 45 PERIODS SE OUTCOMES: and of the course, the students will be able to: Visualize the objects in different dimensions. Identify appropriate data visualization techniques given particular requirements imposed by the data. Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical sciences. Apply the virtualization techniques for research projects. Design and process the data for Visualization. ENCES: Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization coundations, Techniques, Applications", 2010. Colin Ware, "Information Visualization Perception for Design", Fourth Edition, Morgan Caufmann Publishers, 2021. Cobert Spence "Information visualization – Design for interaction", Second Edition,

Mapping of Course Outcomes to Programme Outcomes

Course	Programme Outcomes						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	2	-	-	2	

CO2	3	3	2	-	-	2
CO3	3	3	2	-	-	2
CO4	3	3	2	-	-	2
CO5	3	3	2	-	-	2
СО	3	3	2	-	-	2

PROFESSIONAL ELECTIVES V

CP22351	AGILE METHODOLOGIES	L	Т	Р	С
		3	0	0	$\frac{0}{3}$
COURSE	DBJECTIVES:		_	-	-
• To	learn the fundamental principles and practices associated with ear	ch o	f th	ie ag	gile
dev	elopment methods				
• To a	pply the principles and practices of agile software development on a pr	rojec	t of	inte	rest
and	relevance to the student.				
• To	provide a good understanding of software design and a set of softwa	are te	echn	olog	gies
and	APIs.			-	
• To	do a detailed examination and demonstration of Agile development	ent a	and	test	ing
	niques.				U
• To 1	inderstand Agile development and testing.				
UNITI	AGILE SOFTWARE DEVELOPMENT				9
	Fundamentals of Agile Process Methods, Values of Agile, Prince	ciples	s of	` Ag	ile,
	s, Challenges. Lean Approach: Waste Management, Kaizen and Kanb				
	ts add value. Roles related to the lifecycle, differences between Agile			-	
-	rences between Agile plans at different lifecycle phases. Testing plan				
•					een
	s and key techniques, principles, understand as a means of assessing	the i			
of a project		the i			
of a project	s and key techniques, principles, understand as a means of assessing / How Agile helps to build quality AGILE AND SCRUM PRINCIPLES	the i			
UNIT II	How Agile helps to build quality		nitia	al sta	atus 9
UNIT II Agile Mani	How Agile helps to build quality AGILE AND SCRUM PRINCIPLES	Need	nitia l of	al sta	atus 9
UNIT II Agile Man	 How Agile helps to build quality AGILE AND SCRUM PRINCIPLES festo, Twelve Practices of XP, Scrum Practices, Applying Scrum. 	Need	nitia l of	al sta	atus 9
UNIT II Agile Mani working of UNIT III	 How Agile helps to build quality AGILE AND SCRUM PRINCIPLES festo, Twelve Practices of XP, Scrum Practices, Applying Scrum. scrum, advanced Scrum Applications, Scrum and the Organization, sc 	Neec	nitia l of val	al sta scru ues	9 um, 9
UNIT II Agile Mani working of UNIT III Communic	 How Agile helps to build quality AGILE AND SCRUM PRINCIPLES festo, Twelve Practices of XP, Scrum Practices, Applying Scrum. scrum, advanced Scrum Applications, Scrum and the Organization, sc AGILE PRODUCT MANAGEMENT 	Neec crum	nitia l of val	al sta	9 um, 9 ess,
UNIT II Agile Man working of UNIT III Communica Targeting a	 How Agile helps to build quality AGILE AND SCRUM PRINCIPLES festo, Twelve Practices of XP, Scrum Practices, Applying Scrum. scrum, advanced Scrum Applications, Scrum and the Organization, sc AGILE PRODUCT MANAGEMENT ation, Planning, Estimation Managing the Agile approach Monit 	Neec crum coring g issu	nitia l of val g pi ie. (al sta scru ues rogro Qual	9 um, 9 ess, ity,
UNIT II Agile Mani working of UNIT III Communica Targeting a Risk, Metri	 How Agile helps to build quality AGILE AND SCRUM PRINCIPLES festo, Twelve Practices of XP, Scrum Practices, Applying Scrum. Is scrum, advanced Scrum Applications, Scrum and the Organization, sc AGILE PRODUCT MANAGEMENT ation, Planning, Estimation Managing the Agile approach Monit nd motivating the team, Managing business involvement, Escalating 	Neec crum oring g issu gress	nitia l of val g pi ue. (al sta scru ues rogro Qual	9 um, 9 ess, ity,
UNIT II Agile Mani working of UNIT III Communica Targeting a Risk, Metri	 How Agile helps to build quality AGILE AND SCRUM PRINCIPLES festo, Twelve Practices of XP, Scrum Practices, Applying Scrum. scrum, advanced Scrum Applications, Scrum and the Organization, sc AGILE PRODUCT MANAGEMENT ation, Planning, Estimation Managing the Agile approach Monit nd motivating the team, Managing business involvement, Escalating cs and Measurements, Managing the Agile approach Monitoring program 	Neec crum oring g issu gress	nitia l of val g pi ue. (al sta scru ues rogro Qual	9 um, 9 ess, ity,
UNIT II Agile Mani working of UNIT III Communica Targeting a Risk, Metri and motiva UNIT IV	 How Agile helps to build quality AGILE AND SCRUM PRINCIPLES festo, Twelve Practices of XP, Scrum Practices, Applying Scrum. Is scrum, advanced Scrum Applications, Scrum and the Organization, scence AGILE PRODUCT MANAGEMENT ation, Planning, Estimation Managing the Agile approach Monit nd motivating the team, Managing business involvement, Escalating cs and Measurements, Managing the Agile approach Monitoring program the team, Managing business involvement and Escalating issue Team 	Neec crum coring g issu gress entat	nitia l of val g pr ne. (al sta scru ues rogro Qual arget	atus 9 um, 9 ess, ity, ing 9
UNIT II Agile Mani working of UNIT III Communica Targeting a Risk, Metri and motiva UNIT IV User Storie	 How Agile helps to build quality AGILE AND SCRUM PRINCIPLES festo, Twelve Practices of XP, Scrum Practices, Applying Scrum. scrum, advanced Scrum Applications, Scrum and the Organization, sc AGILE PRODUCT MANAGEMENT ation, Planning, Estimation Managing the Agile approach Monit nd motivating the team, Managing business involvement, Escalating cs and Measurements, Managing the Agile approach Monitoring program ing the team, Managing business involvement and Escalating issue To AGILE REQUIREMENTS AND AGILE TESTING 	Neec crum coring g issu gress entat nent.	nitia l of val g pr ne. (c, Ta ive Ag	Il sta scru ues rogru Qual nrget	ntus 9 um, 9 ess, ity, ing 9 Risk
UNIT II Agile Mani working of UNIT III Communica Targeting a Risk, Metri and motiva UNIT IV User Storie Managemen	 How Agile helps to build quality AGILE AND SCRUM PRINCIPLES festo, Twelve Practices of XP, Scrum Practices, Applying Scrum. Is scrum, advanced Scrum Applications, Scrum and the Organization, scence AGILE PRODUCT MANAGEMENT ation, Planning, Estimation Managing the Agile approach Monite nd motivating the team, Managing business involvement, Escalating cs and Measurements, Managing the Agile approach Monitoring program the team, Managing business involvement and Escalating issue To AGILE REQUIREMENTS AND AGILE TESTING s, Backlog Management. Agile Architecture: Feature Driven Development 	Neec crum coring g issu gress entat nent.	nitia l of val g pr ne. (c, Ta ive Ag	Il sta scru ues rogru Qual nrget	ntus 9 um, 9 ess, ity, ing 9 Risk

Agile Metrics and Measurements, The Agile approach to estimating and project variables, Agile Measurement, Agile Control: the 7 control parameters. Agile approach to Risk, The Agile approach Configuration Management, The Atern Principles, Atern Philosophy, The rationale for using Atern, Refactoring, Continuous integration, Automated Build Tools. Scrum of Scrums, Team collaborations, Scrum, Estimate a Scrum Project, Track Scrum Projects, Communication in Scrum Projects, Best Practices to Manage Scrum

TOTAL: 45 PERIODS

COURSE OUTCOMES:						
At the e	nd of the course, the students will be able to:					
CO1:	Describe Agile software development and recall the existing problems					
CO2:	Explain the Agile principles and SCRUM practices					
CO3:	Explain the most appropriate way to improve results for a specific circumstance or need.					
CO4.	Determine the most appropriate modifications to current procedures or methods based					
CO4:	on an examination of common issues					
CO5:	Develop a model of expected successes and plans to address any risks or issues.					
REFER	ENCES:					
	obert C. Martin, Agile Software Development, Principles, Patterns, and Practices Alan					
A	pt Series, 2011.					
2. S	ucceeding with Agile : Software Development Using Scrum, Pearson, 2010.					
	avid J. Anderson and Eli Schragenheim, "Agile Management for Software Engineering:					
^{3.} A	pplying the Theory of Constraints for Business Results, Prentice Hall, 2003.					
4. H	azza and Dubinsky, "Agile Software Engineering, Series: Undergraduate Topics in					
	Computer Science, Springer, 2009.					
5. 0	raig Larman, "Agile and Iterative Development: A Managers Guide, Addison-Wesley,					
. 2	004					

Mapping of Course Outcomes to Programme Outcomes

Course	Programme Outcomes						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	2	-	-	1	
CO2	3	2	2	-	-	1	
CO3	3	2	2	-	-	1	
CO4	3	2	2	-	-	1	
CO5	3	2	2	-	_	1	
CO	3	2	2	-	-	1	

CP22352	BIG DATA MINING AND ANALYTICS	L	Т	P	С			
	3	0	0	3				
COURSEC	DBJECTIVES:							
• To u	To understand the computational approaches to Modeling, Feature Extraction							
• To u	To understand the need and application of Map Reduce							
• To u	nderstand the various search algorithms applicable to Big Data							
• To u	To understand and interpret streaming data							
• To 1	• To learn how to handle large data sets in main memory and learn the various clustering							
tech	techniques applicable to Big Data							

UNITI DATA MINING AND LARGE SCALE FILES

Introduction to Statistical modeling – Machine Learning – Computational approaches to modeling - Summarization - Feature Extraction - Statistical Limits on Data Mining - Distributed File Systems - Map-reduce - Algorithms using Map Reduce - Efficiency of Cluster Computing Techniques.

UNIT II **SIMILAR ITEMS**

Nearest Neighbor Search - Shingling of Documents - Similarity preserving summaries - Locality sensitive hashing for documents - Distance Measures - Theory of Locality Sensitive Functions -LSH Families – Methods for High Degree of Similarities.

UNIT III | MINING DATA STREAMS

Stream Data Model - Sampling Data in the Stream - Filtering Streams - Counting Distance Elements in a Stream – Estimating Moments – Counting Ones in Window – Decaying Windows. 9

UNIT IV LINK ANALYSIS AND FREQUENT ITEMSETS

Page Rank – Efficient Computation - Topic Sensitive Page Rank – Link Spam – Market Basket Model - A-priori algorithm - Handling Larger Datasets in Main Memory - Limited Pass Algorithm – Counting Frequent Item sets.

UNIT V CLUSTERING

Introduction to Clustering Techniques – Hierarchical Clustering – Algorithms – K-Means – CURE - Clustering in Non -- Euclidean Spaces -- Streams and Parallelism -- Case Study: Advertising on the Web-Recommendation Systems.

COURSE OUTCOMES:						
At the	e end of the course, the students will be able to:					
CO	. Describe the need and application of Map Reduce and explain computational					
	approaches to Modeling, Feature Extraction					
CO2	Explain various search algorithms applicable to Big Data					
CO	B: Describe the streaming data applicable to Big Data					
CO ₄	Apply algorithms and propose solutions for Big Data by optimizing main memory					
	consumption.					
CO	Apply appropriate clustering techniques for problems in Big Data.					
REFE	CRENCES:					
1	Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, "Mining of Massive Datasets",					
1.	Third Edition, Cambridge University Press, 2020.					
2.	Jiawei Han, Micheline Kamber, Jian Pei, "Data Mining Concepts and Techniques", Third					
۷.	Edition, Morgan Kaufman Publications, 2012.					
3.	Ian H.Witten, Eibe Frank "Data Mining – Practical Machine Learning Tools and					
5.	Techniques", Third Edition, Morgan Kaufman Publications, 2011.					
4.	David Hand, Heikki Mannila and Padhraic Smyth, "Principles of Data Mining", MIT					
4.	PRESS, 2001					
5.	Tan, Steinbach & Kumar, "Introduction to Data Mining", Second Edition, Pearson, 2021.					

Mapping of Course Outcomes to Programme Outcomes

Course		P	rogramme (Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	2	-	1	1
CO2	2	1	2	-	1	1

9

9

9

9

CO3	2	1	2	-	2	1
CO4	2	-	2	-	2	3
CO5	2	-	2	-	2	3
CO	2	1	2	-	2	2

CP22353	QUANTUM COMPUTING	L	Τ	Р	С		
COUDEE	OBJECTIVES:	3	0	0	3		
	introduce the building blocks of Quantum computers and highlight the	<u> </u>					
		-					
	understand the Quantum state transformations and the algorithms	1					
	understand entangled quantum subsystems and properties of entangled	1					
	explore the applications of quantum computing						
UNITI	QUANTUM BUILDING BLOCKS	0		0	9		
	um Mechanics of Photon Polarization, Single-Qubit Quantum Systems						
	ntangled States, Multiple-Qubit Systems, Measurement of Multiple-Q	ubit	Stat	es, I	PR		
	nd Bell's Theorem, Bloch sphere Tentative						
UNIT II	QUANTUM STATE TRANSFORMATIONS			~.	9		
-	ransformations, Quantum Gates, Unitary Transformations as Qu						
	e Classical Computations to Quantum Computations, Language	fo	r Ç	uan	um		
Implemen							
UNIT III					9		
	g with Superpositions, Quantum Subroutines, Quantum Fourier 7	ran	stori	nati	ons,		
UNIT IV	corithm and Generalizations, Grover's Algorithm and Generalizations ENTANGLED SUBSYSTEMS AND ROBUST QUANTUM						
UNITIV	COMPUTATION				9		
Quantum	Subsystems, Properties of Entangled States, Quantum Error Correction	on, (Grap	h st	ates		
and codes,	CSS Codes, Stabilizer Codes, Fault Tolerance and Robust Quantum C	Com	putii	ıg			
UNIT V	QUANTUM INFORMATION PROCESSING				9		
Limitation	s of Quantum Computing, Alternatives to the Circuit Model of Quantu	m C	omp	outat	ion,		
Quantum	Protocols, Building Quantum, Computers, Simulating Quantum Syste	ems,	Bel	l sta	tes.		
Quantum	eleportation. Quantum Cryptography, no cloning theorem						
	TOTAI	.: 4 5	5 PE	RIC	DS		
	OUTCOMES:						
	l of the course, the students will be able to:						
	Explain the basic principles of quantum computing.						
	Describe several basic quantum computing algorithms.						
	Apply entangled quantum subsystems and properties of entangled state						
Develop the classes of problems that can be expected to be solved well by quant				tum			
CO4: Computers.							
(1)5.	Analyze the fundamental differences between conventional computing and quantum						
REFERE	NCES:						

1	John Gribbin, "Computing with Quantum Cats: From Colossus to Qubits", Prometheus
1.	Books, 2021.
2	William (Chuck) Easttom, "Quantum Computing Fundamentals", Pearson Education,
۷.	2021.
3.	Parag Lala, "Quantum Computing", McGraw Hill, 2019.
4.	Eleanor Rieffel and Wolfgang Polak, "QUANTUM COMPUTING A Gentle
4.	Introduction", MIT Press, 2011.
5	Nielsen M. A., "Quantum Computation and Quantum Information", Cambridge University
5.	Press.2002.

Course Programme Outcomes						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	2	2	-	1
CO2	2	-	2	2	-	1
CO3	2	-	2	2	-	1
CO4	2	-	2	2	-	1
CO5	2	-	2	2	_	1
CO	2		2	2	-	1

CP22354	MOBILE AND PERVASIVE COMPUTING	L	Т	Р	С
		3	0	0	3
COURSEC	BJECTIVES:				
 To understand the basics of Mobile Computing and Personal Computing 					
• To l	earn the role of cellular networks in Mobile and Pervasive Computing	5			
• To e	xpose to the concept of sensor and mesh networks				
• To e	xpose to the context aware and wearable computing				
• To l	earn to develop applications in mobile and pervasive computing envir	onn	nent		
UNITI	INTRODUCTION				9
Differences	between Mobile Communication and Mobile Computing - Contex	ts ai	nd N	Jame	es –
Functions –	Applications and Services - New Applications - Making Legacy App	licat	ions	Mo	bile
Enabled –	Design Considerations - Integration of Wireless and Wired Netwo	rks ·	– St	anda	ırds
Bodies – P	ervasive Computing - Basics and Vision - Principles of Pervasiv	e C	omp	outin	g –
Categories of	of Pervasive Devices				
UNIT II	3G AND 4G CELLULAR NETWORKS				9
Migration to	p 3G Networks - IMT 2000 and UMTS - UMTS Architecture - Us	er E	Equip	pmei	nt –
Radio Netw	ork Subsystem – UTRAN – Node B – RNC functions – USIM – Prot	ocol	Sta	ck –	CS
and PS Don	and PS Domains - IMS Architecture - Handover - 3.5G and 3.9G a brief discussion - 4G LAN				
and Cellular	and Cellular Networks - LTE - Control Plane - NAS and RRC - User Plane - PDCP, RLC and				
MAC – Wil	Max IEEE 802.16d/e – WiMax Internetworking with 3GPP				
UNIT III	SENSOR AND MESH NETWORKS				9
Sensor Net	works - Role in Pervasive Computing - In Network Proces	sing	g an	d E)ata
Disseminati	Dissemination – Sensor Databases – Data Management in Wireless Mobile Environments –				
Wireless M	esh Networks – Architecture – Mesh Routers – Mesh Clients – Routin	ıg —	Cros	ss La	ıyer

Approach – Security Aspects of Various Layers in WMN – Applications of Sensor and Mesh networks

UNIT IV CONTEXT AWARE COMPUTING & WEARABLE COMPUTING

Adaptability – Mechanisms for Adaptation - Functionality and Data – Transcoding – Location Aware Computing – Location Representation – Localization Techniques – Triangulation and Scene Analysis – Delaunay Triangulation and Voronoi graphs – Types of Context – Role of Mobile Middleware – Adaptation and Agents – Service Discovery Middleware Health BAN-Medical and Technological Requirements-Wearable Sensors-Intra-BAN communications

UNIT V APPLICATION DEVELOPMENT

Three tier architecture - Model View Controller Architecture - Memory Management – Information Access Devices – PDAs and Smart Phones – Smart Cards and Embedded Controls – J2ME – Programming for CLDC – GUI in MIDP – Application Development ON Android and iPhone

TOTAL: 45 PERIODS

9

9

COURSE OUTCOMES:					
At the	e end of the course, the students will be able to:				
CO	Outline the principles of mobile and pervasive computing and routing in a mesh				
	network.				
CO	Explain the basic architecture for a pervasive computing environment and allocate the				
CO2	resources on the 3G and 4G wireless networks.				
COS	Discuss the role of sensors in Wireless networks.				
CO4	: Deploy the location and context information for application development.				
CO	Illustrate mobile computing applications based on the paradigm of context aware				
COS	computing and wearable computing.				
REFF	REFERENCES:				
1.	Asoke K Talukder, Hasan Ahmed, Roopa R Yavagal, "Mobile Computing: Technology,				
1.	Applications and Service Creation", Second Edition, Tata McGraw Hill, 2017.				
2.	Reto Meier, "Professional Android 2 Application Development", Wrox Wiley, 2010.				
2	Jochen Burthardt et al, 'Pervasive Computing: Technology and Architecture of Mobile				
3.	Internet Applications', Pearson Education, 2003.				
4.	Mobile Networks Architecture by Andre Perez, Wiley, March 2012.				
_	John Horton, Android Programming for Beginners, Second Edition, Packt Publishing,				
5.	2018.				

101	Mapping of Course Outcomes to Frogramme Outcomes							
Course		Programme Outcomes						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	3	-	-	-		
CO2	3	3	3	-	-	-		
CO3	3	3	3	-	-	-		
CO4	3	3	3	-	-	-		
CO5	3	3	3	-	3	-		

Mapping of Course Outcomes to Programme Outcomes

		СО	3	3	3	-	3	-
--	--	----	---	---	---	---	---	---

AUDIT COURSES

AC221	01 ENGLISH FOR RESEARCH PAPER WRITING	L	Т	Р	С
		2	0	0	0
COUR	SEOBJECTIVES:				
•	Feach how to improve writing skills and level of readability				
•	Fell about what to write in each section				
•	Summarize the skills needed when writing a Title				
•	Infer the skills needed when writing the Conclusion				
•	Ensure the quality of paper at very first-time submission				
UNITI	INTRODUCTION TO RESEARCH PAPER WRITING				6
Plannin	g and Preparation, Word Order, Breaking up long sentences, Structuring	Par	agra	phs	and
	es, Being Concise and Removing Redundancy, Avoiding Ambiguity and				
UNIT I	I PRESENTATION SKILLS				6
Clarifyi	ng Who Did What, Highlighting Your Findings, Hedging and Criticizin	g, F	Parap	ohras	sing
and Pla	giarism, Sections of a Paper, Abstracts, Introduction				
UNIT I	II TITLE WRITING SKILLS				6
	lls are needed when writing a Title, key skills are needed when writing a				
skills a	e needed when writing an Introduction, skills needed when writing a	Re	viev	v of	the
Literatu	re, Methods, Results, Discussion, Conclusions, The Final Check				
UNIT I	V RESULT WRITING SKILLS				6
	re needed when writing the Methods, skills needed when writing the Re			kills	are
	when writing the Discussion, Skills are needed when writing the Conclus	ions			
UNIT V	VERIFICATION SKILLS				6
	phrases, checking Plagiarism, how to ensure paper is as good as it could	pos	sibl	y be	the
first- tii	ne submission				
	TOTAL	: 30) PE	RIC	DS
	SE OUTCOMES:				
At the	and of the course, the students will be able to:				
CO1:	Understand that how to improve writing skills and level of readability				
CO2:	Learn about what to write in each section				
CO3:	Understand the skills needed when writing a Title				
CO4 :	Understand the skills needed when writing the Conclusion				
CO5:	Ensure the good quality of paper at very first-time submission				
REFEI	ENCES:				
1	Adrian Wallwork, English for Writing Research Papers, Springer New	Yor	k Do	ordre	echt
	Ieidelberg London, 2011.				
	Day R How to Write and Publish a Scientific Paper, Cambridge University Press 2006.				
	Goldbort R Writing for Science, Yale University Press (available on Goog				
	Iighman N, Handbook of Writing for the Mathematical Sciences, SIAM. I 998.	High	mar	ı's b	ook

AC2210	2 CONSTITUTION OF INDIA	L	Т	Р	С
		2	0	0	0
COURS	COBJECTIVES:				
Students	will be able to:				
• U	nderstand the premises informing the twin themes of liberty and freed	om	fron	n a c	ivil
ri	thts perspective				
• T	address the growth of Indian opinion regarding modern India	n i	ntell	ectu	als'
cc	nstitutional				
• R	ble and entitlement to civil and economic rights as well as the emergence	ce of	nati	onh	ood
in	the early years of Indian nationalism				
• To address the role of socialism in India after the commencement of the Bolshev					
Revolution 1917 and its impact on the initial drafting of the Indian Constitution					
UNITI	HISTORY OF MAKING OF THE INDIAN CONSTITUTION				2
History, I	Drafting Committee, (Composition & Working)				
UNIT II	PHILOSOPHY OF THE INDIAN CONSTITUTION				2
Preamble	Salient Features				
UNIT III	CONTOURS OF CONSTITUTIONAL RIGHTS AND DU	TIE	S		6
Fundame	ntal Rights, Right to Equality, Right to Freedom, Right against Explo	itati	on, l	Righ	t to
	of Religion, Cultural and Educational Rights, Right to Constituti	onal	Re	med	ies,
	Principles of State Policy, Fundamental Duties.				
UNIT IV					6
	t, Composition, Qualifications and Disqualifications, Powers and Funct				
	Governor, Council of Ministers, Judiciary, Appointment and Tran	nsfer	of	Judg	ges,
	ions, Powers and Functions.				
UNIT V	LOCAL ADMINISTRATION				8
	Administration head: Role and Importance, Municipalities: Introduct				
	cted Representative, CEO, Municipal Corporation. Pachayat raj: Introd				
•	. Elected officials and their roles, CEO Zila Pachayat: Position and ro				
-	ional Hierarchy(Different departments), Village level: Role of Elected	i and	1 Ap	poir	ited
	Importance of grass root democracy				
UNIT VI			1 .1	71 4	6
	Commission: Role and Functioning. Chief Election Commissione		na I	Lieci	.10n
Commiss	oners - Institute and Bodies for the welfare of SC/ST/OBC and women		DE		DC
COUDSI	TOTAI	.: 3 (PE	KIU	D 5
	d of the course, the students will be able to:				
At the ch	Discuss the growth of the demand for civil rights in India for the bulk of	of In	dian	s hef	ore
CO1:	the arrival of Gandhi in Indian politics	/ 111	uiaii	5 001	ore
	Discuss the intellectual origins of the framework of argument that	at ir	forr	ned	the
CO2:	conceptualization of social reforms leading to revolution in India	<i>a</i> t 11		neu	the
	Discuss the circumstances surrounding the foundation of the Congres	s So	ciali	st Pa	artv
CO3:	[CSP] under the leadership of Jawaharlal Nehru and the eventual failure				
	of direct elections through adult suffrage in the Indian Constitution		г	I	l
·I					

CO	4: Discuss the passage of the Hindu Code Bill of 1956
REF	ERENCES:
1.	The Constitution of India, 1950(Bare Act), Government Publication.
2.	Dr. S.N. Busi, Dr. B. R. Ambedkar Framing of Indian Constitution, 2015.
3.	M.P. Jain, Indian Constitution Law, Seventh Edition, LexisNexis, 2014.
4.	D.D. Basu, Introduction to the Constitution of India, LexisNexis, 2015.

AC22201	DISASTER MANAGEMENT	L	Т	Р	С		
		2	0	0	0		
COURSE	OBJECTIVES:						
• Su	mmarize basics of disaster						
	plain a critical understanding of key concepts in disaster risk manitarian response	rec	lucti	on	and		
• Illu	istrate disaster risk reduction and humanitarian response policy an	d pi	acti	ce fi	rom		
multiple perspectives							
	• Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations						
• Develop the strengths and weaknesses of disaster management approaches							
UNITI	INTRODUCTION				6		
	Definition, Factors and Significance; Difference between Hazard And I nade Disasters: Difference, Nature, Types and Magnitude.	Disa	ster;	Nat	ural		
UNIT II	REPERCUSSIONS OF DISASTERS AND HAZARDS				6		
	Damage, Loss of Human and Animal Life, Destruction Of Eco	•					
	Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts						
	s And Avalanches, Man-made disaster: Nuclear Reactor Meltd				trial		
	, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War An	d C	onfli	cts.			
UNIT III					6		
	eismic Zones; Areas Prone To Floods and Droughts, Landslides And Av						
	Cyclonic and Coastal Hazards with Special Reference To Tsunam	i; F	ost-	Disa	ster		
	nd Epidemics						
UNIT IV		1 /	•	<u> </u>	6		
-	ess: Monitoring Of Phenomena Triggering a Disaster or Hazard; Eva						
	on of Remote Sensing, Data from Meteorological And Other Agencies,	Me	dia I	керс	orts:		
	ental and Community Preparedness.						
UNIT V	RISK ASSESSMENT	1 T	<u>.</u> .	· T	6		
	isk: Concept and Elements, Disaster Risk Reduction, Global and Nation						
	Techniques of Risk Assessment, Global Co-Operation in Risk A	ASSE	essm	ent	and		
warning,	People's Participation in Risk Assessment. Strategies for Survival	. 20		DIO	DC		
COURSE	TOTAL: 30 PERIODS COURSE OUTCOMES:						
-	d of the course, the students will be able to:						
	Ability to summarize basics of disaster						
C02.	Ability to explain a critical understanding of key concepts in disaster ri humanitarian response	sk re	educ	tion	and		
C03.	Ability to illustrate disaster risk reduction and humanitarian response practice from multiple perspectives	onse	pol	icy	and		

CO	4: Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations
CO	5: Ability to develop the strengths and weaknesses of disaster management approaches
REFI	ERENCES:
1.	Goel S. L., Disaster Administration and Management Text and Case Studies", Deep &
1.	Deep Publication Pvt. Ltd., New Delhi, 2009.
2.	NishithaRai, Singh AK, "Disaster Management in India: Perspectives, issues and
۷.	strategies", New Royal book Company, 2007.
3.	Sahni, Pradeep Et.Al.," Disaster Mitigation Experiences and Reflections", PrenticeHall of
5.	India, New Delhi, 2001.

AC22202	நற்றமிழ் இலக்கியம்	L	Τ	Р	С	
		2	0	0	0	
UNIT I	சங்க இலக்கியம்				6	
 தமிழின் துவக்க நூல் தொல்காப்பியம் – எழுத்து, சொல், பொருள் அகநானூறு (82) - இயற்கை இன்னிசை அரங்கம் குறிஞ்சிப் பாட்டின் மலர்க்காட்சி புறநானூறு (95,195) - போரை நிறுத்திய ஒளவையார் 						
UNIT II	அறநெறித் தமிழ்				6	
1. அறநெறி வகுத்த திருவள்ளுவர் - அறம் வலியுறுத்தல், அன்புடைமை, ஒப்புரவறிதல், ஈகை, புகழ் 2. பிற அறநூல்கள் - இலக்கிய மருந்து – ஏலாதி, சிறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தூய்மையை வலியுறுத்தும் நூல்)						
UNIT III	இரட்டைக் காப்பியங்கள்				6	
 கண்ணகியின் புரட்சி - சிலப்பதிகார வழக்குரை காதை சமூகசேவை இலக்கியம் மணிமேகலை சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை 						
UNIT IV	அருள்நெறித் தமிழ்				6	
 நற்றிணை திருமந்திரய தர்மச்சானை புறநானூற அகநானூற 	- பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் ளவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் - அன்னைக்குரிய புன்னை சிறப்பு ம் (617, 618) - இயமம் நியமம் விதிகள் லயை நிறுவிய வள்ளலார் லு - சிறுவனே வள்ளலானான் லு (4) - வண்டு	തഖ	கெ	ாடுத்	தது,	

ஐந்திணை 50 (27) – மான் ஆகியவை பற்றிய செய்திகள்				
UNIT V	நவீன தமிழ் இலக்கியம்	6		
1.	1.உரைநடைத் தமிழ்,			
	- தமிழின் முதல் புதினம்,			
	- தமிழின் முதல் சிறுகதை,			
	- கட்டுரை இலக்கியம்,			
	- பயண இலக்கியம்,			
	- நாடகம்,			
	நாட்டு விடுதலை போராட்டமும் தமிழ் இலக்கியமும்,			
3.	சமுதாய விடுதலையும் தமிழ் இலக்கியமும்,			
4.	பெண் விடுதலையும் விளிம்பு நிலையினரின் மேம்பாட்டில்			
	தமிழ் இலக்கியமும்,			
	அறிவியல் தமிழ்,			
	இணையத்தில் தமிழ்,			
7.	சுற்றுச்சூழல் மேம்பாட்டில் தமிழ் இலக்கியம்.			
	TOTAL: 30 PERIC	DDS		
REFERE	NCES:			
1 தமி	ழ் இணைய கல்விக்கழகம் (Tamil Virtual University)			
2 தமிழ	ழ் விக்கிப்பீடியா (Tamil Wikipedia)			
3 தர்ம	புர ஆதீன வெளியீடு			
4 வாபு	ற்வியல் களஞ்சியம்			
5 தமிழ	த்கலைக் களஞ்சியம் - தமிழ் வளர்ச்சித் துறை (thamilvalarchithurai.com)			
6 அறி	வியல் களஞ்சியம் - தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர்			