M.E. Degree

in

STRUCTURAL ENGINEERING

CURRICULUM & SYLLABUS (CBCS)

(For students admitted from the Academic Year 2022-2023)

DEPARTMENT OF CIVIL ENGINEERING

St. XAVIER'S CATHOLIC COLLEGE OF ENGINEERING

CHUNKANKADAI, NAGERCOIL – 629 003.

KANYAKUMARI DISTRICT, TAMIL NADU, INDIA

St. XAVIER'S CATHOLIC COLLEGE OF ENGINEERING Chunkankadai, Nagercoil – 629 003. AUTONOMOUS COLLEGE AFFILIATED TO ANNA UNIVERSITY ACADEMIC REGULATIONS 2022 M. E. STRUCTURAL ENGINEERING CURRICULAM CHOICE BASED CREDIT SYSTEM

INTRODUCTION

Inconsonance to the vision of our College,

An engineering graduate we form would be a person with optimal human development, i.e. physical, mental, emotional, social and spiritual spheres of personality.

He/she would be also a person mature in relationships, especially knowing how to treat everyone with respect, including persons of complementary gender with equality and gender sensitivity guided by clear and pro-social values.

He would be patriotic and would hold the Indian Constitution and all the precepts it outlays close to his heart and would have a secular spirit committed to safeguard and cherish the multi-cultural, multi-religious and multi-linguistic ethos of Indian Society.

Academically, he/she would be a graduate with a strong engineering foundation with proficient technical knowledge and skills. He would have enough exposure and experience into the ethos of relevant industry and be industry ready to construct a successful career for himself and for the benefit of the society.

He would have been well trained in research methodology and would have established himself as a researcher having taken up many research projects, with sound ethical standards and social relevance. He would be a person with a passion for technical innovations committed to lifelong learning and research.

He would be well prepared and confident to develop ingenuous solutions to the problems people face as an individual and as a team and work for the emancipation of our society with leadership and courage.

Structural engineering is a sub-discipline of civil engineering in which structural engineers are trained to design and construct the structural elements. The curriculum provides the students to gain knowledge and skills using modern engineering equipment and software tools by applying appropriate techniques. Graduates can identify, formulate and solve engineering problems in the domain of structural engineering.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

I.	Gain knowledge and skills in structural engineering which will enable them to have
	a career and professional accomplishment in the public or private sector
	organizations.
II.	Become consultants in Structural Engineering and solve complex real life issues
	related to analysis, design and maintenance of structures under various
	environmental conditions.
III.	Contribute to the enhancement of knowledge in Structural Engineering by
	performing quality research in institutions of international repute or in Research
	organizations or Academia.
IV.	Practice their profession with good communication, leadership, ethics and social
	responsibility and formulate solutions that are technically sound, economically
	feasible, and socially acceptable.
V.	Graduates will function in multi-disciplinary teams and adapt to evolving
	technologies through life-long learning and innovation.

PROGRAMME OUTCOMES (POs)

PO#	Graduate Attribute
1	Independently carry out research/investigation and development work to solve
	practical problems.
2	Write and present substantial technical report/document.
3	Demonstrate a degree of mastery over the techniques in the area of Structural
	Engineering.
4	Analyze, design and create novel products and solutions for the real life problems
	in Structural Engineering.
5	Solve problems in Structural design using modern Engineering equipments and
	software tools by applying appropriate techniques.
6	Function effectively as a professional with ethical attitude, effective
	communication skills, team work skills, leadership skills and multi-disciplinary
	approach to solve Structural Engineering issues to broader social context.

PEO's – PO's MAPPING:

DEO	РО								
PEO	1	2	3	4	5	6			
Ι	2	-	3	1	-	2			
II	3	3	3	3	3	3			
III	3	3	3	3	2	2			
IV	1	2	2	1	1	3			
V	3	2	3	3	3	3			

Veen	Somestar	Course Name		PO							
rear	Semester	Course Maine	1	2	3	4	5	6			
		MA22108	1	-	2	2	-	-			
Ι		SE22102	2	-	2	2	-	2			
	т	SE22101	2	-	3	2	2	2			
	1	SE22103	2	2	2	2	2	2			
		RM22101	-	2	3	-	-	2			
		SE22104	3	3	2	-	-	3			
		SE22201	2	2	2	2	2	2			
		SE22203	3	2	2	3	2	3			
т	II	SE22204	2	-	3	3	-	-			
1	11	SE22202	1	3	3	2	2	2			
		SE22205	2	2	2	3	2	2			
		RM22201	2	2	-	-	2	2			

PROGRAMME ARTICULATION MATRIX:

SEMESTER I

SL. COURSE		COURSE TITLE	CATE -	PERIODS PER WEEK			TOTAL CONTACT	CREDI TS
NU.	CODE		GORY	L	Т	Р	PERIODS	15
THE	ORY COUR	SES						
1	MA22108	Advanced Mathematical Methods for Structural Engineers	FC	3	1	0	4	4
2	SE22102	Theory of Elasticity and Plasticity	PCC	3	1	0	4	4
3		Professional Elective I	PEC	3	0	0	3	3
THE	ORY COUR	SES WITH PRACT	ICAL CO)MPO	NEN	T		
4	SE22101	Structural Dynamics and Earthquake Engineering	PCC	3	0	2	5	4
PRA	CTICAL CO	OURSES						
5	SE22103	Advanced Structural	PCC	0	0	4	4	2

		Engineering Laboratory							
EMP	EMPLOYABILITY ENHANCEMENT COURSES								
6	RM22101	Research Methodology	RMC	2	0	0	2	2	
7	SE22104	Technical Seminar	EEC	0	0	2	2	1	
MAN	DATORY O	COURSES							
8		Audit Course I	AC	2	0	0	2	0	
	·	TOTAL	•	16	2	8	26	20	

SEMESTER II

SL. COURSE		COURSE TITLE	CATE -	PE PER	RIO R WE	DS EK	TOTAL CONTACT	CREDI
NO.	CODE		GORY	L	Τ	Р	PERIODS	15
THE	ORY COUR	SES						
1	SE22201	Advanced Steel Structures	PCC	3	1	0	4	4
2	SE22203	Stability of Structures	PCC	3	0	0	3	3
3	SE22204	Advanced Concrete Structures	PCC	3	0	0	3	3
4		Professional Elective II	PEC	3	0	0	3	3
5		Professional Elective III	PEC	3	0	0	3	3
THE	ORY COUR	SES WITH PRACT	ICAL CO	OMPC	NEN	T		
6	SE22202	Finite Element Analysis of Structures	PCC	3	0	2	5	4
PRA	CTICAL CO	DURSES						
7	SE22205	Structural Design Laboratory	PCC	0	0	4	4	2
EMP	LOYABILI	Г Y ENHANCEME N	T COUR	SES				
8	RM22201	Research Tool Laboratory	RMC	0	0	4	4	2
MAN	DATORY C	COURSES						

9		Audit Course II	AC	2	0	0	2	0
TOTAL				20	1	10	31	24
		CITE:						

SEMESTER III

SL.	COURSE	COURSE TITLE	CATE -	RIODS R WEEK		TOTAL CONTACT	CREDI TS	
no.	CODE		GORY	L	Т	Р	PERIODS	15
THE	ORY COUR	SES						
1		Professional Elective IV	PEC	3	0	0	3	3
2		Professional Elective V	PEC	3	0	0	3	3
3		Open Elective	OEC	3	0	0	3	3
EMP	LOYABILI	ΓΥ ENHANCEMEN	T COUR	SES				
4	SE22301	Practical Training (4 weeks during summer vacation)	EEC	-	-	-	-	2
5	SE22302	Project Phase I	EEC	0	0	6	6	3
	TOTAL			9	0	6	15	14

SEMESTER IV

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PE PEF	RIO R WE	DS EEK	TOTAL CONTACT PERIODS	CREDI TS	
				L	Т	Р			
EMP	EMPLOYABILITY ENHANCEMENT COURSES								
	SE22401	Project Phase II	EEC	-	-	24	24	12	
		TOTAL						12	

Total Credit= 70

SUMMARY

		Name of the	e Programm	ne					
S No	Subject Area		Credits per Semester						
5 .1NO		Ι	II	III	IV	Credits			
1	FC	4	-	-	-	4			
2	PCC	10	16	-	-	26			
3	PEC	3	6	6	-	15			
4	OEC	-	-	3	-	3			
5	EEC	1	2	5	12	20			
6	RMC	2	-	-	-	2			
7	7 Non-Credit AC		0	-	-	0			
	Total	20	24	14	12	70			

AUDIT COURSES (AC)

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PER PER	PERIODS PER WEEK		TOTAL CONTACT	CREDI TS
				L	Т	Р	PERIODS	
1	AC22101	English for Research Paper Writing	AC	2	0	0	2	0
2	AC22102	Constitution of India	AC	2	0	0	2	0
3	AC22201	Disaster Management	AC	2	0	0	2	0
4	AC22202	நற்றமிழ் இலக்கியம்	AC	2	0	0	2	0

PROFESSIONAL ELECTIVE I – SEMESTER I

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDI TS	
				L	Т	Р	PERIODS		
1	SE22111	Advanced Concrete Technology	PEC	3	0	0	3	3	
2	SE22112	Prefabricated	PEC	3	0	0	3	3	

		Structures						
3	SE22113	Prestressed Concrete Structures	PEC	3	0	0	3	3
4	SE22114	Mechanics of Composite Materials	PEC	3	0	0	3	3

PROFESSIONAL ELECTIVES II– SEMESTER II

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODSImage: PER WEEK		TOTAL CONTACT	CREDI TS	
				L	Т	Р	PERIODS	
1	SE22221	Maintenance and Rehabilitation of Structures	PEC	3	0	0	3	3
2	SE22222	Design of Form Works	PEC	3	0	0	3	3
3	SE22223	Design of Steel Concrete Composite Structures	PEC	3	0	0	3	3
4	SE22224	Offshore Structures	PEC	3	0	0	3	3

PROFESSIONAL ELECTIVES III – SEMESTER II

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PER PER	RIOD R WE	S EK	TOTAL CONTACT	CREDI TS
				L	Т	Р	PERIODS	
1	SE22231	Industrial Structures	PEC	3	0	0	3	3
2	SE22232	Wind and Cyclone Effects on Structures	PEC	3	0	0	3	3
3	SE22233	Nonlinear Analysis of	PEC	3	0	0	3	3

		Structures						
4	SE22234	Optimization of Structures	PEC	3	0	0	3	3

PROFESSIONAL ELECTIVES IV- SEMESTER III

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDI TS
				L	Т	Р	PERIODS	
1	SE22341	Smart Materials and Smart Structures	PEC	3	0	0	3	3
2	SE22342	Design of Masonry Structures	PEC	3	0	0	3	3
3	SE22343	Design of Plates and Shells	PEC	3	0	0	3	3
4	SE22344	Digital Construction	PEC	3	0	0	3	3

PROFESSIONAL ELECTIVES V – SEMESTER III

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PE PEF	RIOI R WE	DS EK	TOTAL CONTACT	CREDITS
				L	Т	Р	PERIODS	
1	SE22351	Structural Health Monitoring	PEC	3	0	0	3	3
2	SE22352	Performance of Structures with Soil Structure Interaction	PEC	3	0	0	3	3
3	SE22353	Design of Sub Structures	PEC	3	0	0	3	3
4	SE22354	Design of Bridges	PEC	3	0	0	3	3

MA22108	ADVANCED MATHEMATICAL METHODS	L	Т	P	C				
	FOR STRUCTURAL ENGINEERS								
		3	1	0	4				
COURSEOBJECTI	VES:								
To familiariz	e the students with basic concepts of statistical tes	ts, e	expe	rime	ntal				
designs and se	plution of equations								
• To make the	• To make the students with the techniques of statistical tests and design of								
experiments									
To familiariz	e the students with the techniques of Laplace tra	nsfo	rm	and	the				
application of	solving partial differential equation								
To familiariz	e the students with the concept and the applica	tion	of	Fou	rier				
Transform tec	chniques								
• To acquaint	the student with the basic concept of Tensor a	inaly	/sis	and	its				
applications									
UNIT I	TESTING OF HYPOTHESIS				12				
Statistical hypothesis	- Type I and Type II errors - Large sample tests b	ased	l on	Nor	mal				
distribution for sing	e mean and difference of means -Tests based on t	dis	tribu	ition	for				
single mean and equa	ality of means - Test based on F distribution for equality	ity o	f va	rianc	es -				
Chi square test for	single variance and goodness of fit - Independence	e of	attr	ibute	es -				
Contingency table: A	nalysis of r c tables.								
UNIT II	DESIGN OF EXPERIMENTS				12				
General principles	-Analysis of variances-Different designs of Blo	ocks	: O	ne v	way				
classification: Comp	letely Randomized Block Design (CBD)-two-way	cla	assif	icatio	ons:				
Randomized Block D	Design (RBD) – Three-way classification: Latin square	desi	gn (LSD)-2-				
square factorial desi	gn - Taguchi - Concept of the loss function - Ex	peri	men	t des	sign				
strategy.									
UNIT III	LAPLACE TRANSFORM TECHNIQUES FOR	PAR	TIA	L	12				
	DIFFERENTIAL EQUATIONS								
Laplace transform:	Definitions-Properties-Transform error function-Be	essel	's f	uncti	ion-				
Dirac delta function-	Unit step functions-Convolution theorem-Inverse La	plac	e tra	ansfo	rm:				
Complex inversion	formula-Solutions to partial differential equations:	Hea	at ec	quati	on–				
Wave equation.									
UNIT IV	FOURIER TRANSFORM TECHNIQUES FOR H	PAR	TIA	L	12				
	DIFFERENTIALEQUATIONS								
Fourier transform: D	efinitions-Properties-Transform of elementary functi	ons	–Diı	rac d	elta				
function-Convolution	n theorem–Parseval's identity –Solutions to par	tial	dif	ferer	ıtial				
equations: Heat equation	tion-Wave equation-Laplace and Poisson's equations.								
UNIT V	TENSOR ANALYSIS				12				
Summation conventi	on-Contravariant and covariant vectors-Contraction	of te	enso	rs–Ir	ner				
product-Quotient la	aw-Metric tensor-Christoffel symbols-Covariant	dif	ferer	ntiati	on–				
Gradient-Divergence	and curl.								
	TOTAL	L: 6) PE	RIC	DS				
COURSE OUTCOM	MES:								
Upon completion of	the course, the students will/ will be able to								
CO1: Define t	he basic concept of statistical tests, experimental of	desig	gns,	tens	ors,				

	Laplace and Fourier transforms
CO2:	Discuss the techniques of statistical tests, design of experiments and tensor analysis
CO3:	Interpret Laplace and Fourier transform techniques inpartial differential equations
CO4:	Utilize the hypothesis test, design of experiments and tensor analysis in engineering disciplines
CO5:	Solve the boundary value problems using Laplace and Fourier transform techniques in engineering applications
REFEREN	NCES:
1.	Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition, 2016.
2.	SankaraRao, K., "Introduction to Partial Differential Equations", Prentice Hall of India Pvt.Ltd, New Delhi, 1997.
3.	Andrews L.C. and Shivamoggi, B., "Integral Transforms for Engineers", Prentice Hall of India Pvt. Ltd., New Delhi, 2009.
4.	Kay, D. C., "Tensor Calculus", Schaum's Outline Series, Tata McGraw Hill Edition, 2014.
5.	Ranjit K Raj, "A primer on the Taguchi method", Society of Manufacturing Engineers, Second edition, 2010.

CO	РО									
CO	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	2	2	-	-				
CO2	1	-	2	2	-	-				
CO3	1	-	2	2	-	-				
CO4	1	-	2	2	-	-				
CO5	1	-	2	2	-	-				
Average	1	-	2	2	-	-				

	Total 2	Total 16		Cogn	itiv	
Unit No. and Title	Marks	Marks		e Le	vel	
	Qns.	Qns.	Remember	Understand	Apply	Analyse (An)
			(Kn)	(Un)	(Ap)	Evaluate (Ev)
				No. of Qns. (marks) and	СО
Unit-I: Testing of Hypothesis	2	1 either or	1(2)-CO1	1(2)-CO2	1either or (16)-CO4	-
Unit-II: Design of Experiments	2	1 either or	2(2)-CO1	-	1either or (16)-CO4	-
Unit-III: Laplace Transform Techniques for Partial Differential Equations	2	1 either or	1(2)-CO1	1(2)-CO3	1either or (16)-CO5	-
Unit-IV: Fourier Transform Techniques For Partial Differential equations	2	1 either or	1(2)-CO1	1(2)-CO3	1either or (16)-CO5	-

Unit-V: Tensor	2	1 eitl	her or	1(2)-CO	1	1(2)-CO2	1either or (16)-CO4	1 either or (16) — CO5	
Total Qns. Adva Methods for Str	10	5 eitl	her or	6(2)		4(2)	5 either or (16)	-	
Total Marks		20	8	30	12		8	80	16
Weightage		20%	80)%	12%		8%	80%	16%
			Weig	htage fo	r COs				
	CO1	CO2			CO3		CO4		CO5
Total Marks 12		4	4		4		48		32
Weightage 12%		4%	4%		4%		48%	32%	

SE22102	E22102 THEORY OF ELASTICITY AND L T P							
						4		
COURSE	OBJECTI	VES:	•	-	Ŭ			
• To	understand	the concept of 3D stress, strain analysis and its applic	atio	ns				
UNIT I		ELASTICITY 12						
Analysis c	of stress an	nd strain, Equilibrium Equations - Compatibility Eq	uati	ons	- St	ress		
Strain Rel	ationship.	Generalized Hooke's law, Beltrami Michell Equa	ition	ı - 1	Navi	er's		
Equation.								
UNIT II		2D STRESS STRAIN PROBLEMS				12		
Plane stres	s and plane	e strain - Simple two dimensional problems in Cartesia	an ai	nd P	olar	Co-		
ordinates,	Airy's Stre	ss function, Introduction to photo elasticity.						
UNIT III		TORSION OF NON-CIRCULAR SECTION				12		
St.Venant'	s approach	- Prandtl's approach – Membrane analogy - Torsion	of T	Thin	Wal	led-		
Open and	Closed se	ections-Design approach to open web section subje	cted	l to	tors	ion,		
Torsion of	circular an	nd non-circular sections (Ellipse, triangle and rectangle	:).					
UNIT IV		BEAMS ON ELASTIC FOUNDATIONS				12		
Beams on	Elastic fou	indation – Methods of analysis – Elastic line method	– Id	ealiz	zatio	n of		
soil mediu	m – Winkl	ler model – Infinite beams – Semi-infinite and finite	bean	ns –	Solu	tion		
by Finite L	Differences	, Boundary conditions - Applications to elasticity prob	lem	s.				
UNIT V		PLASTICITY				12		
Physical as	ssumptions	s - Yield criteria - Failure theories - Applications of	thic	k cy	lind	er –		
Plastic stre	ess strain re	elationship. Elasto-Plastic problems in bending and tor	sion	•				
		ΤΟΤΑΙ	2:6) PE	CRIC	DDS		
COURSE	OUTCOM	AES:						
Upon com	pletion of	the course, the students will/ will be able to						
CO1.	Define S	strain tensor, plane stress and strain, torsion, be	ams	on	ela	istic		
coi.	foundation and plasticity							
<u>CO</u> 2·	Describe	the fundamentals of stress and strain, torsional beh	avio	r, b	eams	s on		
	elastic for	undation and plastic stress strain relationship						

CO3:	Solve real life problems on plane stress and plane strain conditions, Circular and non-circular sections, bending of beams and elastic foundations.
CO4:	Analyse stress, strain, torsional behavior of sections, beams resting on elastic foundations and simple boundary value problems with elasto-plastic bending and torsion.
CO5:	Compare various theories of failure, torsional behavior of sections and methods of analysis of beam resting on elastic foundation.
REFERE	NCES:
1.	Ansel.C.Ugural and Saul.K.Fenster, "Advanced Strength and Applied Elasticity," Fourth Edition, Prentice Hall Professional technical Reference, New Jersy, 2003.
2.	Chakrabarty.J, "Theory of Plasticity", Third Edition, Elsevier Butterworth - Heinmann – UK, 2011.
3.	Jane Helena H, "Theory of Elasticity and Plasticity", PHI Learning Pvt. Ltd., 2017.
4.	Slater R.A.C, "Engineering Plasticity", John Wiley and Son, New York, 1977.
5.	Timoshenko, S. and GoodierJ.N."Theory of Elasticity", McGraw Hill Book Co., New York, 2017.

CO	PO									
CO	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	-	1	-	-				
CO2	1	-	-	1	-	-				
CO3	2	-	-	3	-	2				
CO4	2	-	-	3	-	-				
CO5	-	-	2	2	-	-				
Average	2	-	2	2	-	2				

	Total 2	Total 16	tal 16 Cognitive Level					
Unit No. and Title	Marks Ons.	Marks Ons.	Remember (Kn)	Understand (Un)	Apply (Ap)	Analyse (An) Evaluate (Ev)		
				No. of Qns. (ma	rks) and CO			
Unit-I: Elasticity	2	1 either or	2(2) – CO1	1 either or (16) – CO1	-	-		
Unit-II: 2d Stress Strain Problems	2	1 either or	1(2) - CO2	1(2) –CO2 1 either or (16) — CO2	-	-		
Unit -III: Torsion of Non- Circular Section	2	1 either or	1(2) — CO3	1(2) — CO3	1 either or (16) — CO3	-		
Unit-IV: Beams on Elastic Foundations	2	1 either or	1(2) - CO4	1(2) — CO4	-	1 either or (16) — CO4		
Unit-V: Plasticity	2	1 either or	1(2) – CO5	1(2) — CO5	-	1 either or (16)—CO5		

Total Qns. Theory of Elasticity And Plasticity		10	5 either or	6(2)	4(2) 1 2 either or (16) 1		1 eith (1 e	er or 5)	-		
Total Marks		20	80	12	40	40		5	32		
Weightage		20%	80%	12%	40%	40%		40%		%	32%
			Weigh	tage for COs							
	CC	01	CO2	CO3		CO4		CO4			CO5
Total Marks	Total Marks 20		20	20	20				20		
Weightage 20%		%	20%	20%	20%				20%		

SE22101	SE22101 STRUCTURAL DYNAMICS AND L T P C EARTHOUAKE ENGINEERING						
		3	0	2	4		
COURSEOBJECTIVES	5:						
To expose the stu	dents the principles and methods of dynamic analy	sis (of st	ructu	ires		
and to prepare th	em for designing the structures for wind, earthe	luak	e an	d ot	her		
dynamic loads							
UNIT I PR	INCIPLES OF VIBRATION ANALYSIS				9		
Mathematical models of	single degree of freedom systems - Free and for	ced	vibra	atior	ı of		
SDOF systems, Response	se of SDOF to special forms of excitation, Effe	ect of	of da	ampi	ing,		
Evaluation of damping, T	ransmissibility, vibration control, Tuned mass dam	iper.					
UNIT II DY	NAMIC RESPONSE OF MULTI-DEGREE O	F			9		
FR	EEDOM SYSTEMS						
Mathematical models of	two degree of freedom systems and multi deg	ree	of f	reed	om		
systems, free and forced	vibrations of two degree and multi degree of fr	eedo	om s	yste	ms,		
normal modes of vibration	on, applications. orthogonality of normal modes,	free	and	l for	ced		
vibrations of multi de	egree of freedom systems, Mode superposit	ion	tec	hnic	jue,		
Applications.							
UNIT III DY	NAMIC RESPONSE OF CONTINUOUS SYS	ГЕЛ	/IS		9		
Mathematical models of	continuous systems, Free and forced vibration	of	con	ntinu	ous		
systems, Rayleigh - R	itz method - Formulation using Conservation	ı of	En	iergy	/ —		
Formulation using Virtu	al Work, Applications, Generalized single deg	ree	of f	reed	om		
system. Step-by-step nu	imerical integration algorithms, Applications, C	Case	stu	dies	in		
calculating the seismic r	esponse quantities of a SDOF as well as MDOF	syst	tem	for a	any		
Indian earthquake.							
UNIT IV IN	TRODUCTION TO EARTHQUAKE ENGINE	ERI	NG		9		
Engineering Seismology	Seismotectonics and Seismic Zoning of Inc	lia,	Ear	thqu	ake		
Monitoring and Seismic	Instrumentation, Characteristics of Strong Earth	nqua	ike]	Moti	lon,		
Estimation of Earthquak	e Parameters, Microzonation. Effect of Earthqua	ke c	on D	viffer	rent		
Types of Structures - L	Types of Structures - Lessons LearntFrom Past Earthquakes -Evaluation of Earthquake						
Forces as per codal provi	sions – ResponseSpectra, Design Spectra.						
UNIT V EA	RTHQUAKE RESISTANT DESIGN OF MAS	ONI	RY		9		
AN	ND RC STRUCTURES						
Structural Systems - Typ	bes of Buildings - Causes of damage - Planning C	lons	idera	ation	1S —		
effect of material of construction on performance of structures - Philosophy and Principle							

of Earthquake Resistant Design - Guidelines for Earthquake Resistant Design - Earthquake Resistant Design of Masonry Buildings and R.C.C. Buildings. Design consideration - Rigid Frames – Shear walls - Lateral load analysis of structures- Capacity based Design and detailing.

TOTAL: 45 PERIODS

LIST OF	FEXPERIMENTS
•	Calculation of linear and non-linear seismic response quantities of an SDOF
	system based on any one of the numerical method algorithm in excel sheet
•	Construction of elastic as well as inelastic response spectrum for Indian
	earthquakes using Prism software.
•	MATLAB software application in calculating natural frequencies and mode
	shape of MDOF system and eventually its base shear and base moment
•	Earthquake response spectrum analysis of systems with distributed mass and
•	Dynamic analysis of system continue using finite element analysis
•	Dynamic analysis of system continua using time element analysis.
	IUIAL :50 PERIODS
COURS	E OUTCOMES:
Upon co	mpletion of the course, the students will/ will be able to
CO1.	Gain knowledge on vibration analysis of system/structures with single degree of
COI	freedom as well as Multi degrees of freedom under free and forced vibration
CO2.	Derive a mathematical model of continuous system and do a dynamic analysis
02.	under free and forced vibration
CO3:	Explain the causes and effect of earthquake
CO4:	Design of masonry and RC structures as earthquake resistant
CO5:	Calculate Earthquake Forces as per codal provisions
REFER	ENCES:
1.	Anil K.Chopra, Dynamics of Structures, Pearson Education, 2020.
2	Leonard Meirovitch, Elements of Vibration Analysis, McGraw Hill, 1986, IOS
2.	Press, 2006.
	Mario Pazv and William Leigh, Structural Dynamics: Theory and Computation,
3.	Springer; 5 th Corrected ed. 2004. Corr. 2nd printing 2006 edition (3 June 2006)
	2004.
4	Roy R.Craig, Jr, Andrew J. Kurdila, Fundamentals of Structural Dynamics, John
4.	Wiley & amp; Sons, 2011.
	Brebbia C. A.," Earthquake Resistant Engineering Structures VIII", WIT Press,
5.	2015

CO				PO		
CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	3	2	3	1

CO2	1	-	3	2	1	1
CO3	2	-	3	2	3	2
CO4	3	-	3	3	-	2
CO5	2	-	3	2	3	2
Average	2	-	3	2	2	2

		Total 2	Total 16		Cognitiv	re Level	
Unit No. and T	Fitle	Marks Ons.	Marks Ons.	Remember (Kn)	Understand (Un)	Apply (Ap)	Analyse (An) Evaluate (Ev)
					No. of Qns. (ma	rks) and CO	·
Unit-I: Principle Vibration Analys	es of sis	2	1 either or	2(2) – CO1	1 either or (16) – CO1	-	-
Unit-II: Dynam Response of Mul of Freedom Syste	-II: Dynamic 2 onse of Multi-Degree eedom Systems		1 either or	2(2) - CO2		(16)—CO2	-
Unit-III: Dynamic Response of Continuous Systems		2	1 either or	1(2) — CO3	1(2) — CO3	$ \begin{array}{c c} 1 & \text{either or} \\ (16) - CO3 \end{array} $	-
Unit-IV: Introdu Earthquake Engi	uction to neering	2	1 either or	1(2) - CO4	1(2) — CO4	1 either or (16) — CO4	-
Unit-V: Earthqua Resistant Design Masonry and Rc	ake of Structures	2	1 either or	2(2) – CO5		-	1 either or (16) — CO5
Total Qns. Structural Dynamics And Earthquake Engineering		10	5 either or	8(2)	2(2) 1 either or (18)	3 either or (16)	-
Total Marks	Total Marks		80	16	20	48	16
Weightage		20%	80%	16%	20%	48%	16%
			Weigh	tage for COs			
	CC	01	CO2	CO3	CO4	4	CO5
Total Marks	20)	20	20	20		20
Weightage	20	%	20%	20%	20%)	20 %

SE22103	ADVANCED STRUCTURAL ENGINEERING	_	Т	Р	С
	LABORATORY				
)	0	4	2
COURSEOBJ	ECTIVES:				
To prov	vide a thorough knowledge of material selection through the n	nat	eria	1 tes	ting
based o	n specification				
LIST OF EXH	PERIMENTS				
• Mix de	• Mix design of concrete as per IS, ACI & BS methods for high performance				
concret	е.				
Flow Characteristics of Self Compacting concrete.					

- Effect of minerals and chemical admixtures in concrete at fresh and hardened state with relevance to workability, strength and durability.
- NDT on hardened concrete UPV, Rebound hammer and core test.
- Permeability test on hardened concrete– Demonstration.
- Ultrasonic interferometer ultrasonic velocity in liquids.
- Electrical conductivity of metals and alloys with temperature-four probe method.
- Deflection test on Beam.
- Compression test on column.

LIST OF EQUIPMENTS

- Strong Floor
- Loading Frame
- Hydraulic Jack
- Load Cell
- Proving Ring
- Demec Gauge
- Rebound Hammer
- Ultrasonic Pulse Velocity Tester
- Dial Gauges
- Four probe apparatus
- Compression testing machine
- L box apparatus
- J box apparatus
- LVDT

TOTAL: 60 PERIODS

COURSE	COUTCOMES:						
Upon con	npletion of the course, the students will/ will be able to						
CO1.	Recall the basis of the design concrete mix which will satisfy the fresh and						
COI	hardened concrete properties						
CO2:	Explain the experimental methods to find the material properties.						
CO3:	Apply suitable non-destructive testing for checking the strength of concrete.						
CO4.	Apply the analytical techniques and graphical analysis to interpret the						
CO4:	experimental data						
CO5.	Analyze the effect of mineral admixtures in fresh and hardened concrete						
005:	property						
REFERE	NCES						
1	Dally J W, and Riley W F, "Experimental Stress Analysis", McGraw-Hill Inc.						
1.	New York,2000.						
C	Gambhir, M.L; 'Concrete Technology", 3 Edition, Tata McGraw Hill						
۷.	Publishing Co Ltd, New Delhi, 2013.						
2	1S10262-2009 Recommended Guidelines for Concrete Mix Design, Bureau of						
5.	Indian Standards, New Delhi, 1998						
4	ACI 211.1: Standard Practice for Selecting Proportions for Normal,						
4.	Heavyweight, and Mass Concrete.						
5	Shetty M.S., Concrete Technology, Revised Edition, S.Chand and Company						
э.	Ltd. Delhi, 2018.						

СО	РО								
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	1	2	1	-	2			
CO2	3	-	2	-	2	2			
CO3	1	2	2	2	3	2			
CO4	3	3	2	2	-	2			
CO5	2	1	2	2	2	2			
Average	2	2	2	2	2	2			

RM22101	RESEARCH METHODOLOGY	L	Т	Р	C				
		2	0	0	2				
COURSEO	BJECTIVES:								
• To give an overview of the research methodology and IPR, and explain the									
techniques of data collection and analysis									
UNIT I	RESEARCH DESIGN				6				
Overview of	research process and design, Use of Secondary and exploratory	da	ta to	ans	wer				
the research	question, Qualitative research, Observation studies, Experiment	s an	d Sı	urve	ys.				
UNIT II	IIDATA COLLECTION AND SOURCES6								
Measuremen	ts, Measurement Scales, Questionnaires and Instruments,	Sa	mpli	ing	and				
methods. Da	ta - Preparing, Exploring, examining and displaying.								
UNIT III	DATA ANALYSIS AND REPORTING				6				
Overview o	f Multivariate analysis, Hypotheses testing and Measures	of A	Asso	ociat	ion.				
Presenting In	nsights and findings using written reports and oral presentation.								
UNIT IV	INTELLECTUAL PROPERTY RIGHTS 6								
Intellectual I	Property – The concept of IPR, Evolution and development of	con	cept	of I	PR,				
IPR develop	oment process, Trade secrets, utility Models, IPR & Bio div	ersi	ity,	Role	e of				
WIPO and W	VTO in IPR establishments, Right of Property, Common rules o	f IP	R p	racti	ces,				
Types and	Features of IPR Agreement, Trademark, Functions of UN	ES	CO	in	IPR				
maintenance									
UNIT V	PATENTS				6				
Patents – oł	pjectives and benefits of patent, Concept, features of patent,	Inv	enti	ve s	tep,				
Specification	n, Types of patent application, process E-filling, Examination of	of p	aten	it, G	rant				
of patent, F	Revocation, Equitable Assignments, Licenses, Licensing of	rela	ted	pate	nts,				
patent agents	s, Registration of patent agents.								
TOTAL: 30 PERIODS									
COURSE OUTCOMES:									
Upon completion of the course, the students will/ will be able to									
CO1: (Outline the methodology of research								
CO2: E	Explain the research problem, data collection methods, IPR and I	oate	nt						
CO3: F	Prepare a well-structured research paper, scientific presentati	ons	and	d pa	tent				

	applications
CO4:	Develop awareness on IPR, patent law and procedural mechanism in obtaining a patent
CO5:	Compare the methods of measurement scale, questionnaire, sampling and data analysis
REFERE	NCES:
1.	Cooper Donald R, Schindler Pamela S and Sharma JK, "Business Research Methods", Tata McGraw Hill Education, 2012.
2.	Kothari C R, Gaurav Garg, "Research Methodology- Methods and Techniques" New Age International Publishers, 2019.
3.	Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade Secrets", Entrepreneur Press, 2007.
4.	David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques", Wiley, 2007.
5.	The Institute of Company Secretaries of India, Statutory body under an Act of parliament, "Professional Programme Intellectual Property Rights, Law and practice", September 2013.

СО	РО							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	-	-	3	-	-	-		
CO2	-	-	3	-	-	-		
CO3	-	2	3	-	-	-		
CO4	-	-	3	-	-	-		
CO5	-	-	3	-	-	2		
Average	-	2	3	-	-	2		

	Total 2	Total 16	Cognitive Level				
Unit No. and Title	Marks Qns.	Marks Qns.	Remember (Kn)	Understand (Un)	Apply (Ap)	Analyse (An) Evaluate (Ev)	
	-			No. of Qns. (ma	rks) and CO		
Unit-I: Research Design	2	1 either or	2(2) – CO1	1 either or (16) – CO1	-	-	
Unit-II: Data Collection and Sources	2	1 either or	2(2) - CO2		$\begin{array}{c} 1 \text{ either or} \\ (16) - \text{CO2} \end{array}$	-	
Unit-III: Data Analysis and Reporting	2	1 either or	1(2) — CO3	1(2) — CO3		1 either or (16)—CO3	
Unit-IV: Intellectual Property Rights	2	1 either or	2(2) - CO4		1 either or (16) — CO4	-	
Unit -V: Patents	2	1 either or	1(2) - CO5	1(2)—CO5 1 either or	-		

					(1	.6) — CO5				
Total Qns. Research Methodology		10	5 either or	8(2)	2	2(2) either or (16)	2 eith (1	er or 6)	-	
Total Marks		20	80	16		36 32		2	16	
Weightage		20%	80%	16%		36% 32%		%	16%	
	Weightage for COs									
	CO1		CO2	CO3		CO4		CO5		
Total Marks	l Marks 20		20	20		20			20	
Weightage	Weightage 20%		20%	20%	20%		20%		20%	

SE22104TECHNICAL SEMINARLTPC0021COURSEOBJECTIVES:

To work on a specific technical topic in Structural Engineering in order to acquire the

• skills of oral presentation and to acquire technical writing abilities for seminars and conferences

SYLLABUS

٠

The students will work for two hours per week guided by a group of staff members. They will be asked to talk on any topic of their choice related to Structural Engineering and to engage in dialogue with the audience. A brief copy of their talk also should be submitted. Similarly, the students will have to present a seminar of not less than fifteen minutes and not more than thirty minutes on the technical topic. They will also answer the queries on the topic. The students as audience also should interact. Evaluation will be based on the technical presentation and the report and also on the interaction during the seminar.

	TOTAL: 30 PERIODS					
COURSE	OUTCOMES:					
Upon completion of the course, the students will/ will be able to						
CO1:	Identify latest developments in the field of Structural Engineering					
CO2:	Develop technical writing abilities for seminars, conferences and journal					
	publications					
CO3:	Make use of modern tools to present the technical details					

СО	РО								
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	3	-	-	3			
CO2	-	3	1	-	-	3			
CO3	-	-	1	-	-	3			
Average	3	3	2	-	-	3			

SE22201	ADVANCED STEEL STRUCTURES	L	Т	Р	С					
		3	1	0	4					
COURSEOBJECTIVES:										

• To	study the behaviour of members and connections, analysis and design of Industrial					
bu	dings and roofs, chimneys. Study the design of with cold formed steel and plastic					
an	lysis of structures					
UNIT I	GENERAL 12					
Design of	members subjected to combined forces - Design of Purlins, Louver rails, Gable					
column ar	d Gable wind girder – Design of simple bases, Gusseted bases and Moment Resisting					
Base Plate	s. Design of Side rails.					
UNIT II	DESIGN OF CONNECTIONS 12					
Types of	connections - Welded and Bolted - Throat and Root Stresses in Fillet Welds -					
Column s	blices-Tension Splices Seated Connections - Unstiffened and Stiffened seated					
Connectio	ns - Moment Resistant Connections - Clip angle Connections - Split beam					
Connectio	as – Framed Connections HSFG bolted connections.					
UNIT III	ANALYSIS AND DESIGN OF INDUSTRIAL BUILDINGS 12					
Analysis a	nd design of different types of trusses - Wind load analysis - Calculation of wind					
load and i	s combination - Analysis and design of industrial buildings – Sway and non sway					
frames – A	seismic design of steel buildings - Design of plate Girder.					
UNIT IV	PLASTIC ANALYSIS OF STRUCTURES 12					
Introducti	n, Shape factor, Moment redistribution, Combined mechanisms, Analysis of portal					
frames, H	ffect of axial force-Effect of shear force on plastic moment, Connections-					
Requirem	nt- Moment resisting connections. Design of Straight Corner Connections – Hunched					
Connectio	ns- Design of continuous beams.					
UNIT V	DESIGN OF LIGHT GAUGE STEEL STRUCTURE					
Introducti	n to Direct Strength Method - Cold formed light gauge section - Type of cross					
sections -	stiffened - multiple stiffened and unstiffened element Behaviour of Compression					
Elements	Effective width for load and deflection determination – Behaviour of Unstiffened					
and Stiffe	ed Elements – Design of webs of beams – Flexural members – Lateral buckling of					
beams – S	lear Lag – Flange Curling – Design of Compression Members – wall Studs.					
COUDSE	OUTCOMES.					
Unon con	OUTCOMES:					
Upon con	Vnowledge in the behaviour of structural elements in the industrial structures					
CO1:	while the different foreas					
	subjected to different forces					
CO2:	combined forces					
	Choose an appropriate method to design the structural elements and joints of steel					
CO3:	structures					
	Analyze the plastic behavior of industrial structures light gauge steel structures and					
CO4:	CO4: Analyze the plastic behavior of industrial structures, light gauge steel structures and design the structurel elements subjected to different leading conditions.					
	Evaluate the plastic moment design strength and failure stress in the structural					
CO5:	CO5: Dvaluate the plastic moment, design strength and failure stress in the structural					
REFERE	NCES:					
1	Subramanian N. Design of Steel Structures, Oxford University Press, 2014					
2	Duggal "Design of Steel Structures" Tata McGraw-Hill Education 2019					
3	Lynn S. Beedle, Plastic Design of Steel Frames, John Wiley and Sons, 1997					
5.	Narayanan R et al., Teaching Resource on Structural steel Design INSDAG					
4.	Ministry of Steel Publishing.2000.					

5.	Wie Wen Yu, Design of Cold Formed Steel Structures, McGraw Hill Book
	Company,1996

СО	РО								
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	1	1	2	-	1			
CO2	1	2	1	2	-	1			
CO3	3	2	3	3	2	2			
CO4	2	2	3	3	2	2			
CO5	2	2	2	2	-	2			
Average	2	2	2	2	2	2			

		Total 2	Total 16	Cognitive Level					
Unit No. and '	Title	Marks Ons.	Marks Ons.	Remember (Kn)	Ur	nderstand (Un)	Ap (A	ply (p)	Analyse (An) Evaluate (Ev)
		C	C		No. (of Qns. (ma	rks) and	l CO	
Unit-I: General		2	1 either or	2(2) – CO1	1 (10	either or 6) – CO1	-		-
Unit-II: Design Connections	of	2	1 either or	1(2) - CO2	1 1 (16	(2) - CO2 either or 6) — CO2	-		-
Unit-III: Analysis and Design of Industrial Buildings		2	1 either or	1(2) — CO3	1(2	2) — CO3	-		1 either or (16)—CO3
Unit-IV: Plastic of Structures	Unit-IV: Plastic Analysis of Structures		1 either or	1(2) - CO4	1(2	2) — CO4	1 eit (16) —	her or - CO4	-
Unit -V: Design Gauge Steel Stru	of Light	2	1 either or	1(2)- CO5	1(2	2)—CO5		-	1 either or (16) — CO5
Total Qns. Advanced Steel Structures		10	5 either or	6(2)	20	4(2) either or (16)	2 either or (16)		-
Total Marks		20	80	12		40	10	5	32
Weightage	Weightage		80%	12%		40%	16	%	32%
Weightage for COs									
	CC	01	CO2	CO3		<u>CO4</u>	-		CO5
Total Marks	20	0	20	20		20		20	
Weightage	20	%	20%	20%		20%			20%

SE22203	STABILITY OF STRUCTURES	L	P	С					
		3	0	0	3				
COURSEOBJECTIVES:									
• To stu	To study the concept of buckling and analysis of structural elements								
UNIT I	BUCKLING OF COLUMNS				9				
States of equilibrium - Classification of buckling problems - concept of equilibrium,									

energy, in	nperfection and vibration approaches to stability analysis - Eigen value probl	em.
Governing	g equation for columns - Analysis for various boundary conditions - us	sing
Equilibriu	m, Energy methods. Approximate methods - Rayleigh Ritz, Galerkins approa	ch -
Numerica	I Techniques - Finite difference method - Effect of shear on buckling.	
UNIT II	BUCKLING OF BEAM-COLUMNS AND FRAMES	9
Theory of	f beam column - Stability analysis of beam column with single and sev	veral
concentrat	ted loads, distributed load and end couples Analysis of rigid jointed frames	with
and witho	ut sway – Use of stability function to determine the critical load.	
UNIT III	TORSIONAL AND LATERAL BUCKLING	9
Torsional	buckling - Combined Torsional and flexural buckling - Local buckling. Buck	ling
of Open S	ections. Numerical solutions. Lateral buckling of beams, pure bending of sin	nply
supported	and cantilever beams. St Venant torsion and non-uniform torsion, Rayleigh-	Ritz
method fo	r torsional flexural buckling of column.	
UNIT IV	BUCKLING OF PLATES	9
Governing	g differential equation - Buckling of thin plates, various edge condition	S -
Analysis l	by equilibrium and energy approach – Finite difference method. Shell buckli	ng:
Solution of	of Donnell's equation, Shell buckling by using finite deflection theory, P	' ost
buckling of	of axially compressed cylindrical shell panel.	
UNIT V	INELASTIC BUCKLING	9
Double m	odulus theory - Tangent modulus theory - Shanley's model - Eccentrically loa	aded
inelastic c	olumn. Inelastic buckling of plates - Post buckling behaviour of plates, Linear	and
non Linea	r Eigen Value problems-Buckling problem orthogonality relation -Ritz met	hod-
Timoshen	ko method, Galerkin method.	
	TOTAL: 45 PERIO	DS
COURSE	COUTCOMES:	
Upon con	npletion of the course, the students will/ will be able to	
CO1:	State the buckling effect of structural elements by various approaches	
CO2:	Describe the mathematical problems in structural elements	
CO3:	Apply differential equation and different methods in structural elements	
CO4:	Analysis the buckling effect of beam, column, and plate	
CO5:	Create to communicate inelastic behavior of different methods	
REFERE	NCES:	
1	Ashwini Kumar, "Stability Theory of Structures", Allied publishers Ltd., New	W
1.	Delhi, 2003.	
2.	Chajes, A. "Principles of Structures Stability Theory", Prentice Hall, 1974.	
2	Gambhir, "Stability Analysis and Design of Structures", springer, New York	,
э.	2004.	
1	Simitser.G.J and Hodges D.H,"Fundamentals of Structural Stability", Elsevie	er
4.	Ltd., 2006.	
5	Timoshenko.S.P, and Gere.J.M, "Theory of Elastic Stability", McGraw Hill	
э.	Book Company, 1963.	

CO		PO								
CO	PO1	PO2	PO3	PO4	PO5	PO6				

CO1	3	1	1	3	-	-
CO2	3	2	3	3	1	-
CO3	3	3	3	3	1	-
CO4	3	1	3	3	2	-
CO5	3	1	1	3	3	3
Average	3	2	2	3	2	3
r	Table of speci	fication fo	r end semeste	er question pa	per	

Fable of specification	for end	semester	question	paper
-------------------------------	---------	----------	----------	-------

		Total 2	Total 16	Cognitive Level					
Unit No. and '	Title	Marks Ons.	Marks Ons.	Remember (Kn)	U	nderstand (Un)	Apply (Ap)		Analyse (An) Evaluate (Ev)
		Z inoi		No. of Qns. (marks) and CO					
Unit-I: Bucklin Columns	g of	2	1 either or	2(2) – CO1	1 (1	either or 6) – CO1	-		-
Unit-II: Buckling of Beam-Columns And Frames		2	1 either or	1(2) - CO2	1 1 (1	1(2) - CO2 either or 6) — CO2	-		-
Unit-III: Torsional and Lateral Buckling		2	1 either or	1(2) — CO3	1	(2) — CO3	1 eit (16)—	her or -CO3	-
Unit-IV: Buckling of Plates		2	1 either or	1(2) - CO4	10	(2) — CO4	1 eith (16) —	her or CO4	-
Unit-V: Inelastic	Buckling	2	1 either or	1(2) – CO5	10	(2) — CO5	-		1 either or (16) — CO5
Total Qns. Stabi Structures	Total Qns. Stability Of Structures		5 either or	6(2)	2	3(2) either or (16)	2 eith (1 e	er or 5)	-
Total Marks		20	80	12		40	32	2	16
Weightage		20%	80%	12%		40%	329	%	16%
	-		Weigh	tage for COs					
	CC	01	CO2	CO3		CO4	ŀ		CO5
Total Marks	2	0	20	20		20			20
Weightage	20	%	20%	20%		20%			20%

SE22204	ADVANCED CONCRETE STRUCTURES	L T P							
		3	0	0	3				
COURSEOBJECTIVES:									
• To make the students be familiar with behaviour of RCC beams and columns and to design special structural members with proper detailing									
UNIT I	DESIGN PHILOSOPHY				9				
Limit state design - Review of limit state design - Serviceability limit states - beams, slabs and columns according to IS Codes. Calculation of deflection and crack width according to IS Code. Interaction curve generation for axial force and bending.									
UNIT II	DESIGN OF SPECIAL RC ELEMENTS				9				
Design of slende	er columns - Design of plain concrete walls- Design of RC	wal	ls. S	strut	and				

tie methoe floors.	d of analysis for corbels and deep beams, Design of corbels, Deep-beams and g	grid
UNIT III	FLAT SLABS AND YIELD LINE BASED DESIGN	9
Design of Yield line Equivalen	flat slabs according to IS method – Check for shear - Design of spandrel bean the theory and Hillerborg's strip method of design of slabs. Direct design methon the frame method - Shear in Column.	ns - od -
UNIT IV	INELASTIC BEHAVIOUR OF CONCRETE BEAMS AND COLUMNS	9
Inelastic ductility c	behaviour of concrete beams and Baker's method, moment - rotation curv definitions, evaluation.	ves,
UNIT V	DUCTILE DETAILING	9
Concept of Design of control of	of Ductility – Detailing for ductility – Design of beams, columns for ductility f cast-in-situ joints in frames. Flexural yielding in frames and walls- Qua concrete.	ty - lity
	TOTAL: 45 PERIO	DS
COURSE	E OUTCOMES:	
Upon con	npletion of the course, the students will/ will be able to	
CO1:	State the properties and behaviour of concrete elements	
CO2:	Describe the structural and inelastic behaviour of beams, columns, corbels, walls, deep beams, grid floors and Flat slab	RC
CO3:	Design Flexural, compression and special RC elements	
CO4:	Analyse the concrete elements to provide a safe construction	
CO5:	Estimate the deflection, crack width, moment, shear and ductility of the conce elements	rete
REFERE	ENCES:	
1.	Gambhir.M. L., "Design of Reinforced Concrete Structures", Prentice Hall India, 2012.	l of
2.	Purushothaman, P, "Reinforced Concrete Structural Elements: Behavi Analysis and Design", Tata McGraw Hill,1986.	iour
3.	UnnikrishnaPillai and DevdasMenon "Reinforced Concrete Design', Th Edition, Tata McGraw Hill Publishers Company Ltd., New Delhi, 2007.	hird
4.	Varghese, P.C, "Advanced Reinforced Concrete Design", Prentice Hall of Inc 2005.	dia,
5.	Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall India, 2007.	l of

CO	РО								
0	PO1	PO2	PO3	PO4	PO5	PO6			

CO1	1	-	2	2	-	-
CO2	2	-	3	2	-	-
CO3	2	-	-	3	-	-
CO4	2	-	3	3	-	-
CO5	2	-	3	3	-	-
Average	2	-	3	3	-	-

		Total 2	Total 16		Cognitive Level					
Unit No. and '	Title	Marks	Marks	Remember (Kn)	U	nderstand (Un)	Ap (A	ply .p)	Analyse (An) Evaluate (Ev)	
		Q115.	Quist.		No.	of Qns. (ma	rks) and	I CO		
Unit-I: Design Philosophy		2	1 either or	2(2) – CO1	1 (1	either or 6) – CO1	-		-	
Unit-II: Design RC Elements	of Special	2	1 either or	1(2) - CO2	1((2) - CO2	1 either or (16) — CO2		-	
Unit-III: Flat S Yield Line Base	Unit-III: Flat Slabs and Yield Line Based Design		1 either or	1(2) — CO3	1	(2) — CO3	1 eit (16) –	her or -CO3	-	
Unit-IV: Inelastic Behaviour of Concrete Beams and Columns		2	1 either or	1(2) - CO4	10	(2) — CO4	1 eit (16) —	her or CO4	-	
Unit-V: Ductile	Detailing	2	1 either or	1(2) – CO5	1	(2) — CO5	-		1 either or (16) — CO5	
Total Qns. Adva Concrete Structu	Total Qns. Advanced Concrete Structures		5 either or	6(2)	1	4(2) either or (16)	3 either or (16)		-	
Total Marks		20	80	12		24	48	3	16	
Weightage		20%	80%	12%		24%	48	%	16%	
			Weigh	tage for COs						
	CC	01	CO2	CO3		CO4	ŀ		CO5	
Total Marks	20	0	20	20		20	20		20	
Weightage	20	%	20%	20%		20%		20%		

SE22202	FINITE ELEMENT ANALYSIS OF STRUCTURES	L	Т	Р	C		
		3	0	2	4		
COURSEOBJECTIVES:							
• To make the students understand the basics of the Finite Element Technique, and to							
cover the analysis methodologies for 1-D, 2-D and 3-D Structural Engineering							
problems							
UNIT I INTRODUCTION					9		
Introduction -	Basic Concepts of Finite Element Analysis - Introduction to I	Elas	ticity	y- St	teps		
in Finite Elem	ent Analysis - Finite Element Formulation Techniques - Vi	rtua	1 W	ork	and		
Variational Principle - Galerkin Method - Finite Element Method: Displacement Approach							
- Stiffness Matrix and Boundary Conditions.							
UNIT II	ELEMENT PROPERTIES				9		
Natural Coord	linates - Triangular Elements-Rectangular Elements -	Lag	gran	ge	and		

Serendip	ity Elements - Solid Elements - Isoparametric Formulation - Stiffness Matrix of
Isoparan	netric Elements Numerical Integration: One, Two and Three Dimensional -
Problem	S.
UNIT II	IANALYSIS OF FRAME STRUCTURES9
Stiffness	of Truss Members-Analysis of Truss-Stiffness of Beam Members-Finite Element
Analysis	of Continuous Beam-Plane Frame Analysis-Analysis of Grid and Space Frame.
UNIT IV	TWO AND THREE DIMENSIONAL SOLIDS9
Constant	t Strain Triangle - Linear Strain Triangle - Rectangular Elements- Numerical
Evaluati	on of Element Stiffness - Computation of Stresses, Geometric Nonlinearity and
Static (Condensation - Axisymmetric Element - Finite Element Formulation of
Axisym	netric Element - Finite Element Formulation for 3 Dimensional Elements-
Problem	
	APPLICATIONS OF FEM 9
Introduc	tion to Plate Bending Problems - Finite Element Analysis of Thin Plate - Finite
Element	Analysis of Thick Plate - Finite Element Analysis of Skew Plate - Introduction to
Finite St	in Analysis of Shell -Finite Elements for Elastic Stability
- Dynain	
LISTO	F EVDEDIMENTS
1	Dynamic analysis of frame using mathematical computational software
2	Finite Element Analysis of 2D truss and 3D space trusses
3	Modelling and Finite Element Analysis of RC beams and slabs
<u>J.</u>	Finite Element Analysis of thin and thick plates
5	Stability analysis of structure using FFM
5.	TOTAL: 30 PERIODS
COUDS	FOUTCOMES.
	E OUTCOMES:
Upon co	State the basics of finite element analysis, its approximation tackling errors
CO1:	induced and the step by step procedure involved in analysing various structures
<u> </u>	Describe the pioneer methods to finite element analysis and their comparison
	Apply the finite element analysis procedure on various structures in order to
CO3:	calculate the internal forces
CO4:	Analyze the results by varying the various parameters
	Evaluate the static as well as dynamics performances of various structures using
CO5:	any finite element analysis software
REFER	ENCES:
1	David Hutton, "Fundamentals of Finite Element Analysis", Tata McGraw Hill
1.	Publishing Company Limited, New Delhi, 2017.
2	C. Krishnamoorthy, "Finite Element Analysis: Theory and Programming", Tata
۷.	McGraw Hill Publishing Company Limited, New Delhi, 2017.
3	Logan D. L., A First Course in the Finite Element Method, Thomson-
5.	Engineering, 3rd edition, 2001.
Δ	Zienkiewicz, O.C. and Taylor, R.L., "The Finite Element Method", Seventh
т.	Edition, McGraw – Hill, 2013.
5.	Chandrupatla, R.T. and Belegundu, A.D., "Introduction to Finite Elements in

$E_{11} = 11 + 12$ $E_{12} = 11 + 12$ $E_{12} = 11 + 12 + 12$ $E_{12} = 12 + 12 + 12$ $E_{12} = 12 + 12 + 12$ $E_{12} = 12 + 12 + 12$ $E_{12} = 1$
Engineering ^T , Fourth Edition, Prentice Hall of India, 2015.

СО	РО							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	3	1	-	1		
CO2	1	-	3	1	-	1		
CO3	1	3	3	2	1	3		
CO4	1	3	3	2	1	3		
CO5	3	3	3	3	3	3		
Average	1	3	3	2	2	2		

Unit No. and Title		Total 2	Total 16	Cognitive Level						
		Marks	Marks	Remember (Kn)	U	nderstand (Un)	Ap (A	ply Ap)	Analyse (An) Evaluate (Ev)	
		C	C		No.	of Qns. (ma	arks) an	d CO		
Unit-I: Introduc	ction	2	1 either or	2(2) – CO1	1 (1	either or 6) – CO1	-		-	
Unit-II: Elemen Properties	ıt	2	1 either or	2(2) - CO2	1 (1	either or 6) — CO2	-		-	
Unit-III: Analysis of Frame Structures		2	1 either or	1(2) — CO3	1((2) — CO3	_ 1		1 either or (16)—CO3	
Unit-IV: Two and Three Dimensional Solids		2	1 either or	1(2) - CO4	1((2) — CO4	1 either or (16) — CO4		-	
Unit-V: Applications Of Fem		2	1 either or	1(2) - CO5	1((2)—CO5	1 either or (16) — CO5		-	
Total Qns. Finite Element Analysis of Structures		10	5 either or	7(2)	2	3(2) either or (16)	2 either or (16)		-	
Total Marks		20	80	14		38	3	2	16	
Weightage		20%	80%	14%		38%	32	%	16%	
	Weightage for COs									
CO		01	CO2	CO3 CO		CO4	CO4		CO5	
Total Marks	2	0	20	20		20			20	
Weightage	20	%	20%	20%		20%	20%		20%	

SE22205	STRUCTURAL DESIGN LABORATORY	L	Τ	P	С		
		0	0	4	2		
COURSEOBJECTIVES:							
• The students individually design a structure using modern software tools available							
like ET.	like ETABS, STAAD, etc. and present it in the form of a complete detailed drawing						
SYLLABUS							
Students have to work individually with standard codes, computational tools and software packages for analysing, designing and detailing a structure. A detailed report on the work							

done shall	be submitted by individual students in the form of a report and presentation.
	TOTAL: 60 PERIODS
COURSE	OUTCOMES:
Upon con	pletion of the course, the students will/ will be able to
	Knowledge in the design of framed structure subjected to loads and load
CO1:	combination, basic concepts in the design of structural members subjected to
	combined forces
000	Choose an appropriate method to design the structural elements and framed
002:	structures
	Design and detail structures using computer software/tools and check the
CO3:	correctness
	using manual approximate methods
COA	Analyze the structure for various loads and load combination according to the
CO4:	relevant IS Codes
	Evaluate the forces acting, design strength and failure stress in the structural
CO5:	elements

СО	PO							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	1	1	-	-	1		
CO2	2	2	3	3	3	2		
CO3	2	2	3	3	3	2		
CO4	2	2	3	3	2	2		
CO5	2	3	1	2	2	2		
Average	2	2	2	3	2	2		

RM22201	RESEARCH TOOL LABORATORY	L	Т	Р	С			
		0	0	4	2			

COURSEOBJECTIVES:

- To familiarize the fundamental concepts/techniques for Project Management
- To familiarize the journal paper formatting using suitable Software
- To familiarize the software for literature review and Bibliography
- To find the plagiarism percentage of article contents
- To prepare a quality research report and the presentation

LIST OF EXPERIMENTS

- Use of tools / Techniques for Research Project management -Microsoft Project / Microsoft OneNote / Asana
- Hands on Training related to Software for Paper Formatting like LaTeX / MS Office
- Design a Layout of a Research Paper Guidelines for Submitting the Research Paper Review Process -Addressing Reviewer Comments.
- Introduction to Data Analysis Software Origin SPSS, ANOVA etc.,
- Introduction to Software for detection of Plagiarism Urkund, Turniton
- Preparing Bibliography / Different Reference Formats. EndNote, Mently

- Format of Project Report Use of Quotations Method of Transcription- Elements: Title Page - Abstract - Table of Contents - Headings and Sub-Headings - Footnotes -Tables and Figures
- Introduction to Microsoft Excel –for Research Analysis
- Presentation using PPTs.
- Data analysis using Matlab

TOTAL: 60 PERIODS

COURSE	OUTCOMES:					
Upon con	Upon completion of the course, the students will/ will be able to					
CO1.	List the various stages in research and develop systematic planning of project					
	stages					
CO2:	Write a journal paper and formulate as per the standard journal format					
CO3.	Develop a literature review and relevant references for a research problem using					
COS:	suitable software					
CO4:	Determine the plagiarism of the article / report content by using the Software					
CO5:	Compile a research report and the presentation					

Mapping of Course Outcomes to Programme Outcomes

CO	PO								
CO	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	-	-	2	-			
CO2	2	3	-	-	-	-			
CO3	-	2	-	-	-	-			
CO4	-	2	-	-	-	-			
CO5	-	3	-	-	-	2			
Average	2	2	-	-	2	2			

SE22301	PRACTICAL TRAINING	L	Т	Р	С			
		0	0	0	2			

COURSEOBJECTIVES:

• To train the students in the field work so as to have first-hand knowledge of practical problems related to Structural Engineering in carrying out engineering tasks.

SYLLABUS

The students individually undertake training in reputed engineering companies doing Structural Engineering during the summer vacation for a specified duration of four weeks. At the end of training, a detailed report on the work done should be submitted within ten days from the commencement of the semester. The students will be evaluated through a viva-voce examination by a team of internal staff.

TOTAL: 120 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

CO1:	Describe the Structural Engineering organization.
CO2:	Realize the various functions of construction activities.
CO3:	Apply the theoretical concepts in carrying out engineering tasks.

Course outcomes	РО								
Course outcomes	1	2	3	4	5	6			
CO1	2	3	3	3	2	3			
CO2	2	3	3	3	2	3			
CO3	2	3	3	3	2	3			
CO	2	3	3	3	2	3			

SE22302	PROJECT PHASE I	L	Т	Р	С
		0	0	6	3

COURSE OBJECTIVES:

• To identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature.

- To develop the methodology to solve the identified problem.
- To train the students in preparing project reports and to face reviews and viva-voce examination.

SYLLABUS

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

TOTAL: 90 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

Develop the ability to solve a specific problem right from its identification and literature review till the successful solution and prepare project reports.

Course		РО								
outcomes	1	2	3	4	5	6				
CO1	3	3	3	3	3	-				
СО	3	3	3	3	3	-				

SE22401	PROJECT PHASE II	L	Т	Р	С
		0	0	24	12
COUDCE					

COURSEOBJECTIVES:

- To solve the identified problem based on the formulated methodology.
- To develop skills to analyze and discuss the test results, and make conclusions.

SYLLABUS

The student should continue the phase I work on the selected topic as per the formulated methodology / Undergo internship. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated based on the report and the viva-voce examination by a panel of examiners including one external examiner.

TOTAL: 360 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

CO1	Discover potential research areas in the field of Structural Engineering about the knowledge gained from theoretical and practical courses to be creative, well planned organized and coordinated and present the findings of the work
	prained, organized and coordinated, and present the findings of the work
	conducted by report.

Mapping of Course Outcomes to Programme Outcomes

Course	Course PO							
outcomes	1	2	3	4	5	6		
CO1	3	3	3	3	3	3		
CO	3	3	3	3	3	3		

PROFESSIONAL ELECTIVE COURSES

SE22111	ADVANCED CONCRETE TECHNOLOGY	L	Τ	Р	С			
COURSEOBJE	CCTIVES:							
To study	the properties of concrete making materials, tests, mix d	lesig	gn, s	pecia	ıl			
concretes	s and various methods for making concrete							
UNIT I	PROPERTIES OF FRESH AND HARDENED CONC	RE'	ГЕ		9			
Workability-Fac	tors affecting workability- tests to measure workabilit	у, (Com	press	sive			
strength, spilt to	ensile strength, flexural strength, modulus of elasticity-T	Test	pro	cedu	res-			
effect of w/c ratio.								
UNIT II	CREEP AND SHRINKAGE OF CONCRETE				9			
Factors affectin	g creep - effects of concrete, Factors affecting shrir	ıkaş	ge –	Pla	stic			

shrinkage,	drying shrinkage, autogenous shrinkage, carbonation shrinkage –effects			
UNIT III	DURABILITY OF CONCRETE	9		
Permeabil	ity-Correction-Carbonation-Chloride Penetration-Sulphate attack-acid attac	ck–		
Fire resist	ance – Frost damage – alkali silica reaction – Penetration test – Rebound hami	ner		
test – Ultra	a pulse velocity method, Pull out test.			
UNIT IV	STATISTICAL QUILITY CONTROL OF CONCRETE	9		
Mean strength-standard deviation- coefficient of variation- Sampling-testing-accept				
criteria				
UNIT V	SPECIAL TOPIC IN CONCRETE TECHNOLOGY	9		
Special co	ncrete: Self Compaction concrete-Fibre reinforced concrete-Ready mix concre	ete-		
Geo polyn	ner concrete-Green concrete-lightweight concrete.			
Special P	rocess: Under water concreting-cold weather concrete-hot weather concreti	ng-		
mass conc	rete.	0		
	TOTAL: 45 PERIO	DS		
COURSE	OUTCOMES:			
Upon con	pletion of the course, the students will/ will be able to			
CO1.	Define the materials used in construction, test on concrete, special types of			
COI	concrete and various concreting methods			
cor.	Describe the materials used in construction, test on concrete and special types	s of		
CO2:	concrete			
CO3:	Apply the rules in the mix proportion of concrete			
CO4:	Identify the special types of concrete and their applications			
CO5:	Examine the properties of concrete, concreting methods			
REFERE	NCES:			
1	Gambhir.M.L. Concrete Technology, Fifth Edition, McGraw Hill Educati	on,		
1.	2017.			
2.	Gupta.B.L., Amit Gupta, "Concrete Technology, Jain Book Agency, 2010.			
3.	Neville, A.M., Properties of Concrete, Prentice Hall, London, 2012.			
Δ	Shetty M.S., Concrete Technology, Revised Edition, S.Chand and Compa	any		
т.	Ltd. Delhi, 2018.			
5	Job Thomas., Concrete Technology, Cencage learning India Private Ltd, New	1		
5.	Delhi, 2015.			

СО			Р	0		
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	1	3	-	-
CO2	3	2	3	3	1	-
CO3	3	-	-	3	-	-
CO4	3	-	-	3	-	-
CO5	3	3	1	3	-	3
Average	3	3	2	3	1	3

		Total	Total 16	Cognitive Level					
Unit No. and '	Unit No. and Title		Marks Ons.	Remember (Kn)	U	nderstand (Un)	tand Ap) (A		Analyse (An) Evaluate (Ev)
					No.	of Qns. (ma	arks) an	d CO	
Unit-I: Properti Fresh and Harde Concrete	Unit-I: Properties of Fresh and Hardened Concrete		1 either or	2(2) – CO1	(1	l either or l6) – CO1	-	-	-
Unit-II: Creep and Shrinkage of Concrete		2	1 either or	2(2) - CO2	$2(2) - CO2 \qquad \begin{array}{c} 1 \text{ either or} \\ (16) - CO2 \end{array} \qquad - $			-	
Unit-III: Durability of Concrete		2	1 either or	1(2) — CO3	1	(2) — CO3	$\begin{array}{c} 1 \text{ either or} \\ (16) - \text{CO3} \end{array}$		-
Unit-IV: Statistical Quality Control of Concrete		2	1 either or	1(2) - CO4	10	(2) — CO4			1 either or (16) — CO4
Unit-V: Special Concrete Techno	Topic in ology	2	1 either or	1(2) - CO5	1	(2)—CO5	$\begin{array}{c c} 1 & \text{either or} \\ (16) - C05 \end{array}$		
Total Qns. Advanced Concrete Technology		10	5 either or	7(2)	2	3(2) either or (16)	or 2 either or (16)		-
Total Marks		20	80	14		38	3	2	16
Weightage		20%	80%	14%		38%	32	%	16%
			Weig	htage for COs					
	CC	01	CO2	CO3		CO4			CO5
Total Marks	2	0	20	20		20		20	
Weightage	20	%	20%	20%		20%		20%	

Table of specification for end semester question paper

SE22112	DDEEADDICATED STDUCTUDES	т	т	D	C				
SEZZIIZ	PREFABRICATED STRUCTURES L I F								
COURSEOBJE	CCTIVES:								
To Study	the design principles, analysis and design of elements								
UNIT I	DESIGN PRINCIPLES				9				
General Civil E	General Civil Engineering requirements, specific requirements for planning and layout of								
prefabrication	blant. IS Code specifications. Modular co-ordination,	sta	ndar	diza	tion.				
Disuniting of Pr	efabricates, production, transportation, erection, stages of	load	ing	and o	code				
provisions safe	ty factors material properties Deflection control Lateral		id re	sista	nce				
Location and tw	bes of shear walls	100		51500	nee,				
Location and ty	DENTEOD CED CONCEPTE								
UNIT II REINFORCED CONCRETE					9				
Prefabricated structures - Long wall and cross-wall large panel buildings, one way and two									
way prefabricated slabs, Framed buildings with partial and curtain walls, -Connections –									
Beam to column and column to column.									
UNIT III FLOORS, STAIRS AND ROOFS					9				
Types of floor slabs, analysis and design example of cored and panel types and two-way									
systems, staircase slab design, types of roof slabs and insulation requirements, Description									

of joints, their behaviour and reinforcement requirements, Deflection control for short term and long term loads, Ultimate strength calculations in shear and flexure.

UNIT IV	WALLS	9					
Types of	wall panels, Blocks and large panels, Curtain, Partition and load bearing wa	ulls,					
load transfer from floor to wall panels, vertical loads, Eccentricity and stability of wall							
panels, De	esign Curves, types of wall joints, their behaviour and design, Leak preventi	ion,					
joint seala	nts, sandwich wall panels, approximate design of shear walls.						
UNIT V	INDUSTRIAL BUILDINGS AND SHELL ROOFS	9					
Compone	nts of single-storey industrial sheds with crane gantry systems, R.C. Roof Trus	sses,					
Roof Pan	els, corbels and columns, wind bracing design. Cylindrical, Folded plate	and					
hyper- pre	fabricated shells, Erection and jointing, joint design, hand book based design.						
	TOTAL: 45 PERIO	DS					
COURSE	COUTCOMES:						
Upon con	npletion of the course, the students will/ will be able to						
<u> </u>	State the standardization, structural components, joints and tolerance system	ı of					
COI	prefabrication						
cor.	Demonstrate the production, construction of structural members, detailing and						
002:	codal provisions						
CO3:	Summarize the effects of abnormal loads and codal provisions						
CO4.	Differentiate the erection processes, large panel construction and joint flexibility						
CO4:	in prefabrication						
CO5.	Interpret the Design principles of the structural members, expansion joints,						
005:	connections and abnormal loads						
REFERE	NCES:						
1	Koncz.T., Manual of Precast Concrete Construction, Vol. I II and III &	IV					
1.	Bauverlag, GMBH, 1976.						
2	Laszlo Mokk, Prefabricated Concrete for Industrial and Pul	blic					
۷.	Structures, Akademiai Kiado, Budapest, 2007.						
2	Lewicki.B, Building with Large Prefabricates, Elsevier Publishing Compa	ıny,					
5.	Amsterdam/ London/New York, 1998.						
4	Structural Design Manual, Precast Concrete Connection Details, Society for	the					
4.	Studies in the use of Precast Concrete, Netherland BetorVerlag, 2009.						
5	Warszawski, A., Industrialization and Robotics in Building - A manage	rial					
Э.	approach, Harper and Row, 1990.						

СО	РО							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	-	-	1		
CO2	1	-	-	2	2	1		
CO3	2	2	1	1	2	2		
CO4	2	2	2	3	2	2		
CO5	2	2	2	3	2	3		
Average	1	1	1	2	2	2		

Unit No. and Title		T (10	T + 116	Cognitive Level						
		Total 2 Marks Qns.	Marks Qns.	Remember (Kn)	U	nderstand (Un)	Ap (A	ply (p)	Analyse (An) Evaluate (Ev)	
				No. of Qns. (marks) and CO						
Unit-I: Design	Principles	2	1 either or	2(2) – CO1	1 (1	either or 6) – CO1	-		-	
Unit-II: Reinforced Concrete		2	1 either or	1(2) - CO2	1(2) - CO2	1 either or (16)—CO2		-	
Unit-III: Floors, Stairs and roofs		2	1 either or	1(2) — CO3	1(2) — CO3	1 either or (16)—CO3		-	
Unit-IV: Walls		2	1 either or	1(2) - CO4	1(2) — CO4	1 either or (16) — CO4		-	
Unit-V: Industrial Buildings and Shell Roofs		2	1 either or	1(2) - CO5	1(2)—CO5	-		1 either or (16) — CO5	
Total Qns. Prefabricated Structures		10	5 either or	6(2)	1	4(2) either or (16)	4(2) ither or (16) 3 either or (16)		-	
Total Marks		20	80	12		24 4		8	16	
Weightage		20%	80%	12%		24% 48		%	16%	
Weightage for COs										
CO1		01	CO2	CO3	CO4		4		CO5	
Total Marks	farks 20		20	20		20		20		
Weightage 20		%	20%	20% 20		20%	20%		20%	

Table of	specification	for end	semester	question	paper
	1			1	1 1

SE22113	PRESTRESSED CONCRETE STRUCTURES	L	Т	Р	С		
		3	0	0	3		
COURSEOBJE	CCTIVES:						
To study	the principle of prestressing, analysis and design of pres	stres	sed o	conc	rete		
structure	S						
UNIT I	PRINCIPLES OF PRESTRESSING				9		
Basic concepts of	of Prestressing - Types and systems of prestressing - Con-	stitu	ent 1	nate	rials		
and their prope	erties, Analysis methods, losses of prestress - Short	and	Lo	ng 1	term		
deflections – Ca	ble layouts – Camber						
UNIT II	UNIT II DESIGN OF FLEXURAL MEMBERS						
Behaviour of fl	exural members, determination of ultimate flexural stre	engtl	1 —	Vari	ous		
Codal provision	s - Design of flexural members, Design for shear, bo	nd	and	tors	ion.		
Transfer of prest	ress – Design of end blocks						
UNIT III DESIGN OF CONTINUOUS BEAMS					9		
Analysis and design of continuous beams – Methods of achieving continuity – concept of							
linear transformations, concordant cable profile and gap cables.							
UNIT IV DESIGN OF TENSION AND COMPRESSION MEMBERS					9		
Design of tension members – application in the design of prestressed pipes and prestressed							
concrete cylindrical water tanks - Design of compression members with and without							
flexure – its application in the design piles, flag masts and similar structures.							
UNIT V	DESIGN OF COMPOSITE MEMBERS				9		
Composite beams – analysis and	l design,	ultimate	strength -	- their	applications	. Partial	
-------------------------------------	------------	----------	------------	---------	--------------	-----------	
prestressing – its advantages and a	pplication	ns.					
				ΤO		DIODO	

	TOTAL: 45 PERIODS
COURSE	OUTCOMES:
Upon con	pletion of the course, the students will/ will be able to
CO1:	State the basic concepts of prestressing, methods of achieving continuity and partial prestressing
CO2:	Understand the fundamentals of prestressing, deflection and losses in prestressed concrete members
CO3:	Design the flexural members, tension and compression embers and continuous beams
CO4:	Analyse the tension and compression members and composite members
CO5:	Evaluate the stresses in prestressed concrete members
REFERE	NCES:
1.	Arthur H. Nilson, "Design of Prestressed Concrete", John Wiley and Sons Inc, New York, 2004.
2.	Krishna Raju, "Prestressed Concrete", Tata McGraw Hill Publishing Co., New Delhi, 6 th Edition, 2018.
3.	Lin.T.Y.andBurns.H "Design of Prestressed Concrete Structures", John Wiley and Sons Inc, 3 rd Edition, 2010.
4.	Rajagopalan.N, "Prestressed Concrete", Narosa Publications, New Delhi, 2014.
5.	Sinha.N.C. and Roy.S.K, "Fundamentals of Prestressed Concrete", S.Chand and Co., 1998.

СО	PO									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	-	-	-	-				
CO2	2	-	-	-	-	-				
CO3	2	-	3	3	-	-				
CO4	2	-	3	3	2	-				
CO5	2	-	3	3	2	-				
Average	2	-	3	3	2	-				

	Total 2	Total 16		Cognitiv	ve Level	
Unit No. and Title	Marks Qns.	Marks Qns.	Remember (Kn)	Understand (Un)	Apply (Ap)	Analyse (An) Evaluate (Ev)
	2			No. of Qns. (ma	rks) and CO	
Unit-I: Principles of Prestressing	2	1 either or	2(2) – CO1	1 either or (16) – CO1	-	-
Unit-II: Design of Flexural Members	2	1 either or	1(2) - CO2	1(2) - CO2 1 either or (16) — CO2	-	-

Unit-III: Design Continuous Beau	n of ms	2	1 either or	1(2) — CO3	1(2	2) — CO3	1 eit (16)—	her or -CO3	-
Unit-IV: Desig Tension and Cor Members	n of npression	2	1 either or	1(2) - CO4	1(2	2) — CO4	1 either c (16) — CO4		-
Unit-V: Design of Composite Mem	Unit-V: Design of Composite Members		1 either or	1(2)- CO5	1(2	1(2)—CO5 -		-	1 either or (16) — CO5
Total Qns. Presti Concrete Structu	ressed res	10	5 either or	6(2)	2.6	$\begin{array}{c c} 4(2) \\ either or \\ (16) \end{array} \qquad 2 either or \\ (16) \end{array}$		er or 5)	-
Total Marks		20	80	12		40	32	2	16
Weightage		20%	80%	12%		40%	32%		16%
				Weightage	for CO	Os			
	CC	01	CO2	CO3		CO4	CO4		CO5
Total Marks	2	0	20	20		20	20		20
Weightage	20	%	20%	20%		20%		20%	

SE22114	MECHANICS OF COMPOSITE MATERIALS	L	Т	P	С		
		3	0	0	3		

COURSEOBJECTIVES:

• To impart knowledge on the characteristics of composite materials and effect of reinforcement in composite materials, its manufacturing process and strength analysis

UNIT IINTRODUCTION9Definition – Classification and characteristics of Composite materials - Advantages and
application of composites - Functional requirements of reinforcement and matrix - Effect of
reinforcement (size, shape, distribution, volume fraction) on overall composite
performance. Classification – mechanical behavior – basic terminology – manufacture –
advantages

UNIT II REINFORCEMENTS

Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers - Properties and applications of whiskers, particle reinforcements - Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures - Isostrain and Isostress conditions.

9

9

9

UNIT III MANUFACTURING OF METAL MATRIX COMPOSITES

Casting – Solid State diffusion technique - Cladding – Hot isostatic pressing - Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving - Properties and applications.

UNIT IVMANUFACTURING OF POLYMER MATRIX COMPOSITES9

Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding - Properties and applications.

UNIT V STRENGTH

Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using

caplet plo	ts; stress concentrations.
	TOTAL: 45 PERIODS
COURSE	COUTCOMES:
Upon con	npletion of the course, the students will/ will be able to
CO1.	Define the characteristics of composite materials and effect of reinforcement in
	composite materials
CO 2.	Classify the different types of various reinforcements used in composite
02:	materials and the manufacturing processes of metal matrix composites
CO3:	Choose a reinforcement material for making destined composite strength
CO4:	Solve a repair work by using composites materials
CO5:	Motivate research on composites and suggest such materials for current practice
REFERE	NCES:
1	Gibson, R.F., "Principles of Composite Material Mechanics", McGraw-Hill Inc,
1.	4 th edition, 2016.
2	Hyer, M.W., "Stress Analysis of Fiber - Reinforced Composite Materials",
۷.	McGraw Hill, 2008.
2	Issac M. Daniel and OriIshai, "Engineering Mechanics of Composite
5.	Materials", Oxford University Press-2006, First Indian Edition – 2007
4	Mallick, P.K., Fiber, "Reinforced Composites: Materials, Manufacturing and
4.	Design", Maneel Dekker Inc, 1993.
5	Daniel. I.M, and Ishai. O, "Engineering Mechanics of Composite Materials",
5.	Second Edition, Oxford University Press, 2005.

Г

1

1

Mapping of Course Outcomes to Programme Outcomes

СО	РО									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	1	-	-	-	-				
CO2	1	-	-	-	-	-				
CO3	2	2	2	2	1	2				
CO4	2	1	2	2	1	2				
CO5	3	2	2	2	1	2				
Average	2	1	2	2	1	2				

	Total 2	Total 16		Cognitiv	ve Level	
Unit No. and Title	Marks Qns.	Marks Ons.	Remember (Kn)	Understand (Un)	Apply (Ap)	Analyse (An) Evaluate (Ev)
				No. of Qns. (ma	rks) and CO	
Unit-I: Introduction	2	1 either or	2(2) – CO1	1 either or (16) – CO1	-	-
Unit-II: Reinforcements	2	1 either or	2(2) - CO2	1 either or (16) — CO2	-	-
Unit-III: Manufacturing of Metal Matrix	2	1 either or	1(2) — CO3	1(2) — CO3	1 either or (16)—CO3	-

Composites									
Unit-IV: Manu of Polymer Ma Composites	Unit-IV: Manufacturing of Polymer Matrix Composites		1 either or	1(2) - CO4	1(2) — CO4	1 eith (16) —	her or CO4	-
Unit-V: Strength	1	2	1 either or	1(2) - CO5	1(2)—CO5		-	1 either or (16) — CO5
Total Qns. Mechanics of Composite Materials		10	5 either or	7(2)	2	3(2) either or (16)	3(2) either or (16) 2 either or (16)		-
Total Marks		20	80	14		38	32	2	16
Weightage		20%	80%	14%		38%	329	%	16%
			Wei	ghtage for COs	5				
	CC	01	CO2	CO3		CO4	CO4		CO5
Total Marks	20)	20	20		20	20		20
Weightage	20	%	20%	20%		20%	% 20%		20%

SE22221	MAINTENANCE AND REHABILITATION OF	L	Т	Р	С		
	STRUCTURES						
		3	0	0	3		
COURSEOBJE	CCTIVES:						
• To study the damages, repair and rehabilitation of structures							
UNIT I	INTRODUCTION				9		
General Conside	ration – Distresses monitoring – Causes of distresses – Qu	ality	y ass	urar	ice –		
Defects due to a	climate, chemicals, wear and erosion - Inspection - Struc	tura	ıl ap	prais	sal –		
Economic appra	isal- Assessment procedure for evaluating a damaged str	ucti	ire.	Buil	ding		
cracks- Causes -	- diagnosis – Thermal and Shrinkage cracks – unequal load	ing	$-\mathbf{V}$	egeta	ation		
and trees - Che	mical action - Foundation movements - Remedial measu	res	- Te	chni	ques		
for repair – Epoy	xy injection- grouting, shoring and underpinning.						
UNIT II	MOISTURE PENETRATION				9		
Sources of damp	oness - Moisture movement from ground - Reasons for in	effe	ctive	e DF	' С –		
Roof leakage – I	Pitched roofs - Madras Terrace roofs - Membrane treated	roo	fs -	Leal	cage		
of Concrete slab	s - Dampness in solid walls - condensation - hygroscopic	salt	s – 1	reme	dial		
treatments - Fe	rro cement overlay - Chemical coatings - Flexible and	l rig	gid o	coati	ngs.		
Methods of co	rrosion protection, corrosion inhibitors, corrosion resis	tant	ste	els	and		
cathodic protecti	on.						
UNIT III	DISTRESSES AND REMEDIES				9		
Concrete Structu	res: Introduction - Causes of deterioration - Diagnosis o	f ca	uses	- F	low		
charts for diag	nosis - Materials and methods of repair - repairing	g, s	pall	ing	and		
disintegration –	Repairing of concrete floors and pavements.						
Steel Structures	· Types and causes for deterioration – preventive me	asıır	es –	- Re	nair		
procedure – Brit	procedure Brittle fracture Lamellar tearing Defects in welded joints Machanism of						
μ corrosion – Design of protect against corrosion – Design and fabrication errors – Distress							
during erection		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2150	1000		
UNIT IV	MASONRY STRUCTURES AND RETROFITTING				9		
Masonry Struct	ures: Discoloration and weakening of stones Riotic	al r	treat	men	1´ te		
mason y Suuci	ares. Discoloration and weakening of stones – Diote	ai	uval		1.5		

Preservation – Chemical preservatives – Brick masonry structures – Distresses and remedial measures.

Repair of structures distressed due to earthquake – Strengthening using FRP - Strengthening and stabilization techniques for repair - Types of demolition techniques - Engineered demolition techniques for structures.

	SIKENGIHENING OF EAISTINGSIKUCIUKES 9								
General	General principle – relieving loads – Strengthening super structures – plating								
Conversat	Conversation to composite construction – post stressing – Jacketing – bonded overlays –								
Reinforce	ment addition – strengthening substructures – under pinning – Enhancing the								
load capac	tity of footing – Design for rehabilitation.								
	TOTAL: 45 PERIODS								
COURSE	OUTCOMES:								
Upon con	pletion of the course, the students will/ will be able to								
<u>CO1</u> .	List the importance of maintenance, effects in structures due to climate and								
COI	temperature variations, techniques for repair and their protection methods								
000	Demonstrate the causes for deterioration and the repairing techniques to								
CO2: improve the service life of the structures elements									
Identify the damaged structure and maintain the engineering struct									
CO3:	and effectively								
	Discriminate suitable type of strengthening techniques to the structures and the								
CO4:	modern techniques for the demolition of large and hazardous structure in safe								
	manner								
	Survey the quality and durability of concrete and adopt suitable repair								
CO5:	techniques and protection methods								
REFERE	NCES:								
1	Allen R T and Edwards S C. "Renair of Concrete Structures" CRC Press 2019								
1.	Then R.T and Edwards 5.0, Reput of Concrete Structures , CRC 11055, 2017.								
2	Dayaratnam.P and Rao.R, "Maintenance and Durability of Concrete Structures",								
۷.	Universities Press, India, 1997.								
2	Dodge Woodson.R, "Concrete Structures – protection, repair and								
5.	rehabilitation", Elsevier Butterworth – Heinmann, UK, 2011.								
4.	Hand book on seismic retrofit of Building by CPWD and IIT Madras, 2003.								
	Deter II Emmone, "Concrete Dancir and Maintenance Illustrate 4" Calastic								
5.	Peter n.Emmons, Concrete Repair and Maintenance mustrated", Galgotia								
	Publications Pvt. Ltd., 2002.								

Mapping of Course Outcomes to Programme Outcomes

СО	PO									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	2	1	-	-	1				
CO2	2	2	2	-	-	1				
CO3	3	2	2	2 2		2				
CO4	3	2	2	2	1	2				
CO5	3	2	2	2	1	3				
Average	2	2	2	2	1	2				

		Total 2	Total 16	Cognitive Level						
Unit No. and '	Unit No. and Title		Marks Ons.	Remember (Kn)	U	nderstand (Un)	Ap (A	ply (p)	Analyse (An) Evaluate (Ev)	
		C	C		No.	of Qns. (ma	rks) and	l CO		
Unit-I: Introduc	ction	2	1 either or	2(2) – CO1	1 (1	either or (6) – CO1	-		-	
Unit-II: Moistu Penetration	re	2	1 either or	2(2) - CO2	1 (1	either or 6) — CO2			-	
Unit-III: Distre Remedies	esses and	2	1 either or	1(2) — CO3	1((2) — CO3	$\begin{array}{c} 1 \text{ either or} \\ (16) - \text{CO3} \end{array}$		-	
Unit-IV: Maso Structures And Retrofitting	nry	2	1 either or	1(2) - CO4	1(2) — CO4 -			1 either or (16) — CO4	
Unit-V: Strength existing structur	nening Of res	2	1 either or	1(2)- CO5	1((2)—CO5	- 1 either of (16) — CO5		1 either or (16) — CO5	
Total Qns. Maint And Rehabilitatio Structures	Total Qns. Maintenance And Rehabilitation of Structures		5 either or	7(2)	2	3(2) 1 either or 2 either or (16)		er or 6)	2 either or (16)	
Total Marks		20	80	14		38	10	5	32	
Weightage		20%	80%	14%		38%	16	%	32%	
			Wei	ightage for COs	5					
	CC	D1	CO2	CO3		CO4	Ļ		CO5	
Total Marks	2	0	20	20		20			20	
Weightage	20	%	20%	20%		20%	0%		20%	

Table of specification for end semester question pape.	Table of s	pecification	for	end	semester	question	paper
--	------------	--------------	-----	-----	----------	----------	-------

SE22222	DESIGN OF FORM WORKS	L	Т	Р	С			
		3	0	0	3			
COURSEOBJECTIVES:								
• To study and understand the detailed planning of formwork, Design of forms for								
various e	lements such as foundation, slabs, beams, columns and wal	ls						
UNIT I	INTRODUCTION				9			
General objectiv	es of formwork building - Development of a Basic Systen	1 - F	Key A	Area	s of			
cost reduction - Requirements and Selection of Formwork.								
UNIT II	UNIT II FORMWORK MATERIALS AND TYPES 9							
Timber, Plywood, Steel, Aluminium, Plastic, and Accessories. Horizontal and Vertical								
Formwork Supp	orts. Flying Formwork, Table Form, Tunnel Form, Slip F	orm	n, Fo	rmw	ork			
for Precast Conc	rete.							
UNIT III	FORMWORK DESIGN				9			
Concepts, Form	work Systems and Design for Foundations, Walls, Col	umr	ns, S	lab	and			
Beams.								
UNIT IV	FORMWORK DESIGN FOR SPECIAL STRUCTUR	ES			9			
Shells, Domes,	Folded Plates, Overhead Water Tanks, Natural Draft	Coo	ling	Tov	ver,			
Bridges.								
UNIT V	FORMWORK FAILURES				9			

Formwork	Management Issues – Pre- and Post-Award. Formwork Failures: Causes and
Case studi	ies in Formwork Failure, Formwork Issues in Multi story Building Construction.
	TOTAL: 45 PERIODS
COURSE	COUTCOMES:
Upon con	npletion of the course, the students will/ will be able to
CO1:	Recognize the importance of proper formwork, accessories design and its failure.
CO2:	Summarize different forms of form work for Beams, Slabs, columns, Walls and Foundations.
CO3:	Design the form work for Foundations, Walls, Columns, Slab and Beams.
CO4:	Design the form work for Special Structures.
CO5:	Determine the selection, design and failure of formwork through case studies.
REFERE	NCES:
1.	R. L. Peurifoy and Garold D. Oberlender., "Formwork for Concrete Structures", , McGraw Hill India, 2011.
2.	Kumar Neerajha, "Formwork for Concrete Structures", Tata McGraw Hill Education, 2012.
3.	IS 14687: 1999, False work for Concrete Structures - Guidelines, BIS.
4.	Hurd, M.K., Formwork for Concrete, Special Publication No.4, American Concrete Institute, Detroit, 1996
5.	Michael P. Hurst, Construction Press, London and New York, 2003.

СО	РО								
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	2	3	3	2	2			
CO2	1	-	1	2	2	3			
CO3	1	1	-	3	2	3			
CO4	-	2	1	2	3	1			
CO5	1	-	2	2	1	3			
Average	1	2	2	2	2	2			

	Total 2	Total 16	Cognitive Level					
Unit No. and Title	Marks Qns.	Marks Qns.	Remember (Kn)	Understand (Un)	Apply (Ap)	Analyse (An) Evaluate (Ev)		
Unit-I: Introduction	2	1 either or	2(2) – CO1	1 either or (16) – CO1	-	-		
Unit-II: Formwork Materials and Types	2	1 either or	2(2) - CO2	1 either or (16)—CO2	-	-		
Unit-III: Formwork Design	2	1 either or	1(2) — CO3	1(2) — CO3	$\begin{array}{c} 1 \text{ either or} \\ (16) - \text{CO3} \end{array}$	-		

Unit-IV: Formy Design for Speci Structures	vork al	2	1 either or	1(2) - CO4	1((2) — CO4	1 eit (16) —	her or - CO4	-	
Unit-V: Formwo Failures	ork	2	1 either or	1(2) - CO5	1	(2)—CO5	1 e (16		1 either or (16) — CO5	
Total Qns. Design of Form Works		10	5 either or	7(2)	2	3(2) either or (16)	or 2 either or (16)		1 either or (16)	
Total Marks		20	80	14		38 3		2	16	
Weightage		20%	80%	14%		38% 32%		6%	16%	
			We	ightage for COs	5					
	CO1		CO2	CO3		CO4	-		CO5	
Total Marks	2	0	20	20		20			20	
Weightage	20	%	20%	20%		20%			20%	

SE22223		DESIGN OF STEEL CONCRETE COMPOSITE	L	Т	Р	С				
		STRUCTURES								
COURSEOBJECTIVES:										
• To	devel	op an understanding of the behaviour and design con	cret	e co	ompo	site				
ele	elements and structures									
UNIT I		INTRODUCTION				9				
Introduction	on to	steel - concrete composite construction - Codes - Con	npos	ite	actio	n –				
Serviceabi	ility an	d Construction issues in design, theory of composite struct	ures							
UNIT II		DESIGN OF COMPOSITE MEMBERS				9				
Design of composite beams, slabs, columns, beam - columns - Design of composite										
trusses.										
UNIT III	UNIT III DESIGN OF CONNECTIONS 9									
Shear connectors – Types – Design of connections in composite structures – Design of										
shear con	nectors	s - Partial shear interaction. Deck slab - encased colu	mns	5 — 1	in fi	lled				
columns s	ubjecte	ed to Uni-axial & Bi-axial.								
UNIT IV		COMPOSITE BOX GIRDER BRIDGES				9				
Introduction	on - be	haviour of box girder bridges and its types - design procedu	ure a	<u>& co</u>	oncep	ots				
UNIT V		CASE STUDIES				9				
Case studi	ies on	steel - concrete composite construction in buildings - seisr	nic	beha	iviou	r of				
composite	struct	ures.								
		ΤΟΤΑΙ	2:4	5 PE	RIC	DS				
COURSE	OUT	COMES:								
Upon con	npletio	n of the course, the students will/ will be able to								
CO1:	State	the design concrete composite elements and structures								
CO2:	Expla	in the behavior of concrete composite elements and structu	ires							
CO3:	Desig	in the connections of composite structures								
CO4:	Apply girde	y the concept in design of composite beams, columns, r bridges	trus	ses	and	box				
CO5:	Analy	ysis the position to design composite beams, columns, tr	usse	es ar	nd bo)X -				

	girder bridges including the related connections							
REFERE	REFERENCES:							
	Johnson R.P., "Composite Structures of Steel and Concrete Beams, Slabs,							
1.	Columns and Frames for Buildings", Vol.I, Blackwell Scientific Publications,							
	2019.							
2	Oehlers D.J. and Bradford M.A., "Composite Steel and Concrete Structural							
۷.	Members, Fundamental behaviour", Pergamon press, Oxford, 2013.							
2	Owens.G.W and Knowles.P, "Steel Designers Manual", Steel Concrete							
э.	Institute(UK), Oxford Blackwell Scientific Publications, 1992.							
4	HarshadBhandari, "Analysis and Design of Steel and Composite Structures"							
4.	Scitus Academics LLC (Publisher), 2016.							
5	Teaching resource for, "Structural Steel Design," Volume 2 of 3, Institute for Steel							
5.	Development and Growth (INSDAG), 2002.							

CO		РО									
CO	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	3	1	3	-	-					
CO2	3	2	3	3	-	-					
CO3	3	3	2	3	-	-					
CO4	3	3	1	3	3	2					
CO5	3	3	3	3	3	2					
Average	3	3	2	3	3	2					

	Total 2	Total 16 Cognitive Level				
Unit No. and Title	Marks Ons.	Marks Ons.	Remember (Kn)	Understand (Un)	Apply (Ap)	Analyse (An) Evaluate (Ev)
				No. of Qns. (ma	rks) and CO	
Unit-I: Introduction	2	1 either or	2(2) – CO1	1 either or (16) – CO2	-	-
Unit-II: Design of Composite Members	2	1 either or	2(2) – CO1		-	1 either or (16)—CO4
Unit-III: Design of Connections	2	1 either or	1(2) — CO2	1(2) — CO3	$\begin{array}{c} 1 \text{ either or} \\ (16) - \text{CO3} \end{array}$	-
Unit-IV: Composite Box Girder Bridges	2	1 either or	1(2) - CO4	1(2) — CO4	1 either or (16) — CO4	-
Unit-V: Case Studies	2	1 either or	1(2) - CO5	1(2)—CO5	-	1 either or (16) — CO5
Total Qns. Design of Steel Concrete Composite Structures	10	5 either or	3(2) 7(2) 1 either or (16)		2 either or (16)	2 either or (16)
Total Marks	20	80	14	32	32	32
Weightage	20%	80%	14%	38%	32%	16%

Weightage for COs										
	CO1	CO2	CO3	CO4	CO5					
Total Marks	8	18	18	38	20					
Weightage	8%	20%	18%	38%	20%					

SE22224	OFFSHORE STRUCTURES	OFFSHORE STRUCTURES L T P										
COURSEOBJECTIVES:												
• To	study the concept of wave theories, forces and design of jacket t	owe	rs, p	ipes	and							
cal	cables											
UNIT I	WAVE THEORIES				9							
Introduction	on -Wave generation process, small, finite amplitude and	non	linea	ar w	ave							
theories. V	theories. Wave propagation theories.											
UNIT II	FORCES OF OFFSHORE STRUCTURES				9							
Wind forc	es, wave forces on Vertical, Inclined cylinders, structures- small	bod	ies a	nd la	ırge							
bodies - ci	urrent forces - Morison equation.				1							
UNIT III	OFFSHORE SOIL AND STRUCTURE MODELLIN	G			9							
Introduction	on – Offshore soil -Different types of offshore structures, foun	datic	on m	odel	ing,							
fixed jack	et platform structural modelling.				-							
UNIT IV	ANALYSIS OF OFFSHORE STRUCTURES				9							
Introduction	on – Procedure & concept of Static method of analysis, founda	tion	anal	ysis	and							
dynamics	of offshore structures.											
UNIT V	DESIGN OF OFFSHORE STRUCTURES				9							
Introducti	on – offshore structure Design of platforms, helipads, Jacket to	ver,	anal	ysis	and							
design of	mooring cables and pipelines.			-								
	ΤΟΤΑ	L:4	5 PE	RIC	DS							
COURSE	OUTCOMES:											
Upon con	pletion of the course, the students will/ will be able to											
CO1:	Illustrate the wave interaction and design of offshore structure.											
CO2.	Explain the basic theoretical concepts in offshore engineering a	nd a	pply	ther	n to							
02.	actual problems											
CO3.	Execute the calculation of wave forces on fixed and floating	g st	ructu	ires	and							
0.05.	calculate the dynamic response											
CO4:	Describe the use of design codes to check the capacity of structu	ıralı	mem	bers								
C05.	Perform computer simulations, thus being prepared for the prac	tical	need	ls of	the							
	industry											
REFERE	NCES:											
1	James F. Wilson, Dynamics of Offshore Structures, John Wiley & Sons, Inc.											
1.	2003.											
	Reddy.D.V and Swamidas A.S.J.,Essential of offshore	struc	tures	s. C	RC							
2.	Press.2013.											
	Turner Combrane Wave Foreses on Offshare Structure C. 1		<u>, I</u>		ai4							
3.	Lurguisarpkaya, wave Forces on Offshore Structures, Camb	riag	e Ui	nver	sity							
	Press, 2010.											

4.	Mohamed Abdallah El-Reedy "Off Shore Structures" Gulf Professional Publication, 2012.
5.	Chandrasekaran, S. 2017. Dynamic Analysis and Design of Ocean Structures.

CO	РО										
CO	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	3	1	-	2	2					
CO2	2	2	1	1	2	3					
CO3	2	2	1	2	2	3					
CO4	1	1	-	2	-	2					
CO5	2	3	3	3	2	3					
Average	2	2	1	2	2	3					

		Total 2	Total 16	Cognitive Level						
Unit No. and '	Title	Marks	Marks	Remember (Kn)	U	nderstand (Un)	Ap (A	ply .p)	Analyse (An) Evaluate (Ev)	
		Quint le	2		No.	of Qns. (ma	rks) and	I CO		
Unit-I: Wave T	heories	2	1 either or	2(2) – CO1	(1	either or 6) – CO1	-		-	
Unit-II: Forces offshore Structur	Of es	2	1 either or	2(2) - CO2	1 (1	either or 6) — CO2	-		-	
Unit-III: Offsh and Structure M	ore Soil Iodelling	2	1 either or	1(2) — CO3	1	$\begin{array}{c c} \hline 2 \end{array} - CO3 & 1 \text{ eith} \\ \hline (16) - 1 \end{array}$		her or -CO3	-	
Unit-IV: Analy offshore Struct	vsis Of ures	2	1 either or	1(2) - CO4	10	(2) — CO4	1 either or (16) — CO4		-	
Unit-V: Design offshore Structu	Of res	2	1 either or	1(2) - CO5	1	(2)—CO5	- 1 either or (16) — CO		1 either or (16) — CO5	
Total Qns. Offsh Structures	lore	10	5 either or	7(2)	2	3(2) either or (16)	2 either or 1 eithe (16) (16		1 either or (16)	
Total Marks		20	80	14		38	32	2	16	
Weightage		20%	80%	14%		38%	32	%	16%	
			Wei	ghtage for COs						
	CC	01	CO2	CO3 C		CO4	04		CO5	
Total Marks	2	0	20	20		20			20	
Weightage	20	%	20%	20%	% 20%		20%			

SE22231	INDUSTRIAL STRUCTURES	L	Т	Р	С					
		3	0	0	3					
COURSEOBJECTIVES:										
To dissemi structures	nate knowledge about planning and design of RCC and	Ste	el Ir	ndust	rial					

UNIT I	PLANNING AND FUNCTIONAL REQUIREMENTS	9							
Classification of Industries and Industrial structures - planning for Layout Requirements									
regarding Li	ghting, Ventilation and Fire Safety - Protection against noise and vibratio	n -							
Guidelines of Factories Act.									
UNIT II	INDUSTRIAL BUILDINGS	9							
Steel and R	Steel and RCC - Gantry Girder, Crane Girders - Design of Corbels and Nibs - Design of								
Staircase, Roofs for Industrial Buildings - Machine foundations									
UNIT III	POWER PLANT STRUCTURES	9							
Types of po	wer plants - Containment structures - Cooling Towers - Bunkers and Silo	os -							
Pipe support	ing structures – Design of Turbo generator foundation								
UNIT IV	TRANSMISSION LINE STRUCTURES AND CHIMNEYS	9							
Analysis an	d design of steel monopoles, transmission line towers - Sag and Tensi	ion							
calculations,	Methods of tower testing - Design of self supporting and guyed chimn	ey,							
Design of Cl	himney bases. Introduction – Transmission Line Towers - Substation Structu	ires							
- Tower Fou	ndations – Testing Towers								
UNIT V	FOUNDATION	9							
Design of fo	pundation for Towers, Chimneys and Cooling Towers - Machine Foundation	- n							
Design of Tu	urbo Generator Foundation.								
8	TOTAL: 45 PERIO	DS							
COURSE C	TOTAL: 45 PERIO	DS							
COURSE C Upon comp	TOTAL: 45 PERIO DUTCOMES: letion of the course, the students will/ will be able to	DS							
COURSE C Upon comp CO1:	TOTAL: 45 PERIO OUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures	DS							
COURSE C Upon comp CO1: CO2:	TOTAL: 45 PERIO OUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures	DS							
COURSE C Upon comp CO1: CO2: CO3:	TOTAL: 45 PERIO OUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structure both steel and concrete	DS							
COURSE C Upon comp CO1: CO2: CO3: CO4:	TOTAL: 45 PERIO OUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structure both steel and concrete Analyse the structural component of Industrial structure both steel and concrete	DS e							
COURSE C Upon comp CO1: CO2: CO3: CO4: CO5:	TOTAL: 45 PERIO OUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structure both steel and concrete Analyse the structural component of Industrial structure both steel and concrete Check the deflection, crack width, bending moment for industrial structures	DS e							
COURSE C Upon comp CO1: CO2: CO3: CO4: CO5: REFERENC	TOTAL: 45 PERIO OUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structure both steel and concrete Analyse the structural component of Industrial structure both steel and concrete Check the deflection, crack width, bending moment for industrial structures CES:	e							
COURSE C Upon comp CO1: CO2: CO3: CO4: CO5: REFERENC	TOTAL: 45 PERIO OUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structure both steel and concrete Analyse the structural component of Industrial structure both steel and concrete Check the deflection, crack width, bending moment for industrial structures SES: Jurgen Axel Adam, KatharriaHausmann, Frank Juttner, Klauss Daniel, Industrial	e rial							
COURSE C Upon comp CO1: CO2: CO3: CO4: CO5: REFERENC	TOTAL: 45 PERIO OUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structure both steel and concrete Analyse the structural component of Industrial structure both steel and concrete Check the deflection, crack width, bending moment for industrial structures ES: Jurgen Axel Adam, KatharriaHausmann, Frank Juttner, Klauss Daniel, Industrial Buildings: A Design Manual, Birkhauser Publishers, 2004.	e rial							
COURSE C Upon comp CO1: CO2: CO3: CO4: CO5: REFERENC 1.	TOTAL: 45 PERIO OUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structure both steel and concrete Analyse the structural component of Industrial structure both steel and concrete Check the deflection, crack width, bending moment for industrial structures Describes: Jurgen Axel Adam, KatharriaHausmann, Frank Juttner, Klauss Daniel, Industri Buildings: A Design Manual, Birkhauser Publishers, 2004. Santhakumar A.R. and Murthy S.S., Transmission Line Structures, Tata McGr	e rial							
COURSE (C) Upon comp CO1: CO2: CO3: CO4: CO5: REFERENCE 1. 2.	TOTAL: 45 PERIO OUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structure both steel and concrete Analyse the structural component of Industrial structure both steel and concrete Check the deflection, crack width, bending moment for industrial structures DES: Jurgen Axel Adam, KatharriaHausmann, Frank Juttner, Klauss Daniel, Industri Buildings: A Design Manual, Birkhauser Publishers, 2004. Santhakumar A.R. and Murthy S.S., Transmission Line Structures, Tata McGr Hill, 1992.	e rial							
COURSE C Upon comp CO1: CO2: CO3: CO4: CO5: REFERENC 1. 2.	TOTAL: 45 PERIO OUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structure both steel and concrete Analyse the structural component of Industrial structure both steel and concrete Check the deflection, crack width, bending moment for industrial structures CES: Jurgen Axel Adam, KatharriaHausmann, Frank Juttner, Klauss Daniel, Industri Buildings: A Design Manual, Birkhauser Publishers, 2004. Santhakumar A.R. and Murthy S.S., Transmission Line Structures, Tata McGr Hill, 1992. Swami saran, Analysis & Design of substructures, Limit state Design second	e e rial raw							
COURSE C Upon comp CO1: CO2: CO3: CO4: CO5: REFERENCE 1. 2. 3.	TOTAL: 45 PERIO OUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structure both steel and concrete Analyse the structural component of Industrial structure both steel and concrete Check the deflection, crack width, bending moment for industrial structures ZES: Jurgen Axel Adam, KatharriaHausmann, Frank Juttner, Klauss Daniel, Industri Buildings: A Design Manual, Birkhauser Publishers, 2004. Santhakumar A.R. and Murthy S.S., Transmission Line Structures, Tata McGr Hill, 1992. Swami saran, Analysis & Design of substructures, Limit state Design secce Edition.	e rial raw							
COURSE (C) Upon comp CO1: CO2: CO3: CO4: CO5: REFERENC 1. 2. 3. 4.	TOTAL: 45 PERIO OUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structure both steel and concrete Analyse the structural component of Industrial structure both steel and concrete Check the deflection, crack width, bending moment for industrial structures CES: Jurgen Axel Adam, KatharriaHausmann, Frank Juttner, Klauss Daniel, Industri Buildings: A Design Manual, Birkhauser Publishers, 2004. Santhakumar A.R. and Murthy S.S., Transmission Line Structures, Tata McGr Hill, 1992. Swami saran, Analysis & Design of substructures, Limit state Design seco Edition. D, N. Subramaniyan, Design of Steel Structures 2016	e rial caw							
COURSE () Upon comp CO1: CO2: CO3: CO4: CO5: REFERENC 1. 2. 3. 4. 5.	TOTAL: 45 PERIO DUTCOMES: letion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structure both steel and concrete Analyse the structural component of Industrial structure both steel and concrete Check the deflection, crack width, bending moment for industrial structures DES: Jurgen Axel Adam, KatharriaHausmann, Frank Juttner, Klauss Daniel, Industri Buildings: A Design Manual, Birkhauser Publishers, 2004. Santhakumar A.R. and Murthy S.S., Transmission Line Structures, Tata McGr Hill, 1992. Swami saran, Analysis & Design of substructures, Limit state Design secce Edition. D, N. Subramaniyan, Design of Steel Structures 2016 N. Krishna Raju, Advanced Reinforced concrete Design, 3rd edition 2016	e rial cond							

CO	PO									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	1	2	-	-				
CO2	2	-	1	3	-	-				
CO3	2	-	1	-	-	-				
CO4	2	-	-	3	-	-				
CO5	2	_	3	3	-	-				
Average	2	-	1	3	-	-				

		-					· •			
		Total 2	Total 16			Cognitiv	ve Level			
Unit No. and T	Title	Marks	Marks	Marks	Remember	U	nderstand	App	oly	Analyse (An)
		Ons.	Ons.	(Kn)		(Un)	(A)	p)	Evaluate (Ev)	
					No. c	of Qns. (mark	s) and C	CO		
Unit-I. Planning	and	2	1 either or	2(2) - CO1	1	either or	-		-	
Functional Requi	irements	_		_(_)	(1	6) – CO1				
Unit-II: Industria	al Buildings	2	1 either or	2(2) - CO2	1	either or	-		-	
	a Danango			2(2) 002	(1	6) — CO2				
Unit-III: Power	Plant	2	1 either or	1(2) — CO3	1(2) — CO3	1 eitl or	her	-	
Structures							(16)—	CO3		
Unit-IV: Transmission		2	1 either or	1(2) - CO4	1(2) — CO4	-		1 either or	
Line Structures	and				Ì	,			(16) - C04	
Chimneys										
Unit-V: Foundati	on	2	1 -: 41	1(2) CO5	1/	2) CO5	- 1 eit		1 either or	
Unit-V. Foundati	on	Z	1 either or	I(2) = COS		2)-005			(16) — CO5	
						3(2)	1 eithe	r or	2 either or	
Total Qns. Indust	rial	10	5 either or	7(2)	2	either or	(16)	(16)	
Structures						(16)				
Total Marks		20	80	14		38	16		32	
Weightage		20%	80%	14%		38%	16%)	32%	
			Weig	htage for COs						
	CO	1	CO2	CO3		CO4		CC)5	
Total Marks	20)	20	20		20		20	0 0	
Weightage	209	%	20%	20%		20%		20	%	

Table of specification for end semester question paper

SE22232	E22232 WIND AND CYCLONE EFFECTS ON								
	STRUCTURES								
	3								
COURSEOBJE	CCTIVES:								
To study	the concept of wind and cyclone effects for the analysis	and	des	ign o	of				
structure	S								
UNIT I	INTRODUCTION				9				
Introduction, Ty	pes of wind - Characteristics of wind - Method of Measure	aren	nent	of w	/ind				
velocity, variation	on of wind speed with height, shape factor, aspect ratio, dra	g an	d lif	t eff	ects				
- Dynamic natur	e of windPressure and suctions - Spectral studies, Gust fa	ctor							
UNIT II	EFFECT OF WIND ON STRUCTURES				9				
Classification of	f structures - Rigid and Flexible - Effect of wind on str	uctr	ires	-Vo	rtex				
shedding, transla	ational vibration of structures - Static and dynamic effects of	on T	all b	uildi	ngs				
– Chimneys									
UNIT III	DESIGN OF SPECIAL STRUCTURES				9				
Design of Struc	tures for wind loading - as per IS, ASCE and NBC co	de	prov	isior	is —				
design of - Indu	strial sheds - Tall Buildings - Chimneys - Transmission	tow	ers a	and s	teel				
monopoles App	monopoles Application to design, IS 875 code method, Roofs, Shelters & Plates								
UNIT IV CYCLONE EFFECTS									

Cyclone effect on – low rise structures – sloped roof structures - Tall buildings. Effect of cyclone on claddings – design of cladding – use of code provisions in cladding design – Analytical procedure and modeling of cladding, Window glass design and procedure.

UNIT VWIND TUNNEL STUDIES9Wind Tunnel Studies, Types of wind tunnels, Types of wind tunnel models - Modelling
requirements - Aero dynamic and Aero-elastic models, Prediction of acceleration - Load
combination factors - Wind tunnel data analysis - Calculation of Period and damping value
for wind design.

TOTAL:45 PERIODS

COURSE	OUTCOMES:									
Upon con	Upon completion of the course, the students will/ will be able to									
CO1:	Summarize the characteristics of wind and effects of wind on structures									
CO2.	Describe the behaviour of wind and cyclone effects on various types of									
CO2:	structures and wind tunnel studies									
CO3.	Design high rise structures subjected wind load, even structures exposed to									
005.	cyclone									
CO4:	Analyse the effects of wind and cyclone on low rise and tall buildings									
CO5.	Examine the static and dynamic effects on flexible and rigid structures through									
005:	wind tunnel studies									
REFERE	NCES:									
1	Cook.N.J., "The Designer's Guide to Wind Loading of Building Structures",									
1.	Butterworths, 1989.									
2	Kolousek.V, Pirner.M, Fischer.O and Naprstek.J, "Wind Effects on Civil Engineering									
	Structures", Elsevier Publications, 1984									
3	Lawson T.V., "Wind Effects on Building Vol. I and II", Applied Science									
5.	Publishers, London, 1980.									
4.	Peter Sachs, "Wind Forces in Engineering", Pergamon Press, New York, 1978.									
5	Emil Simiu , DongHun Yeo "Wind Effects on Structures: Modern Structural Design for									
5.	Wind", Wiley-Blackwell; 4th edition (1 March 2019).									

Mapping of Course Outcomes to Programme Outcomes

CO	РО										
CO	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	3	1	3	-	-					
CO2	3	2	3	3	-	-					
CO3	3	3	2	3	-	-					
CO4	3	3	1	3	3	2					
CO5	3	2	3	3	3	2					
Average	3	3	2	3	3	2					

Unit No. and Title	Total 2 Marks Qns.	Total 16 Marks Qns.	Cognitive Level				
			Remember (Kn)	Understand (Un)	Apply (Ap)	Analyse (An) Evaluate (Ev)	
				No. of Qns. (m	narks) and CO		

Unit-I: Introdu	ction	2	1 either or	2(2) – CO1	1 either or (16) – CO1	-	-
Unit-II: Effect on Structures	of Wind	2	1 either or	2(2) - CO2	1 either or (16)—CO2	-	-
Unit-III: Desig Special Structu	gn of ires	2	1 either or	1(2) — CO3	1(2) — CO3	$ \begin{array}{c} 1 \text{ either} \\ \text{or} \\ (16) - \text{CO} \end{array} $	3
Unit-IV: Cyclo Effects	one	2	1 either or	1(2) - CO4	1(2) — CO4		1 either or (16) — CO4
Unit-V: Wind T Studies	unnel	2	1 either or	1(2) - CO5	1(2)—CO5	-	1 either or (16) — CO5
Total Qns. Wind Cyclone Effects Structures	l and on	1 0	5 either or	7(2)	3(2) 2 either or (16)	1 either or (16)	2 either or (16)
Total Marks		20	80	14	38	16	32
Weightage		20%	80%	14%	38%	16%	32%
			W	eightage for C	Os		
	СО		CO	CO	CO		СО
	1		2	3	4		5
Total Marks	20	0	20	20	20		20
Weightage	20)	20%	20%	20%		20 %

SE22233	NONLINEAR ANALYSIS OF STRUCTURES	L	Τ	Р	С
		3	0	0	3

COURSEOBJECTIVES:

• To study the concept of non-linear behaviour and analysis of elements and simple structures

UNIT I	INTRODUCTION TO NON-LINEAR ANALYSIS

9

9

Material non-linearity, geometric non-linearity; statically determinate and statically indeterminate bar systems of uniform and variable thickness. Nonlinear governing Equation for beams: moment-Curvature nonlinearity, geometric nonlinearity due to stretching, material nonlinearity - geometrically nonlinear beam problems - Cantilever beam: Moment-curvature nonlinearity - Centrally loaded beam with two supports - Cantilever beam subjected to tip load.

Budjeeteu to tip					
UNIT II	INELASTIC ANALYSIS OF FLEXURAL MEMBERS	9			
Inelastic analysis of uniform and variable thickness members subjected to geometric and					
material non-linearity; inelastic analysis of bars of uniform and variable stiffness members					
with and without axial Restraints.					
UNIT III	VIBRATION THEORY AND ANALYSIS OF FLEXURAL 9				
	MEMBERS				
Vibration theory and analysis of flexural members; hysteretic models and analysis of					
uniform and var	iable stiffness members under cyclic loading.				
UNIT IVELASTIC AND INELASTIC ANALYSIS OF PLATES9					
Elastic and inelastic analysis of uniform and variable thickness plates.					

UNIT V	NON-LINEAR VIBRATION AND INSTABILITY	

Nonlinear vibration and Instabilities of elastically supported beams.

	TOTAL: 45 PERIODS
COURSE	E OUTCOMES:
Upon cor	npletion of the course, the students will/ will be able to
CO1:	Illustrate material and geometric nonlinearity in bars and beams
CO2:	Explain the uniform and variable stiffness members under cyclic loading
CO3.	Understand the elastic as well as inelastic analysis of flexural members including
005:	beams and plates
CO4:	Apply the vibration theory for analyzing flexural members
CO5:	Analyze Instabilities of elastically supported beams for the nonlinear vibration
REFERE	INCES:
1.	Fertis, D.G, Non-linear Mechanics, CRC Press, 1999.
2.	Reddy.J.N, Non-linear Finite Element Analysis, Oxford University Press, 2008.
3.	Sathyamoorthy.M, Nonlinear Analysis of Structures, CRC Press, 2010.
1	Chuen-Yuan Chia," Nonlinear Analysis of Plates", McGraw-Hill International Book
4.	Company, 1980.
5.	Arthur W. Leissa," Vibration of Shells" Acoustical Society of America"1993

CO	РО							
CO	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	3	-	-	1		
CO2	1	-	3	1	2	1		
CO3	2	-	3	1	2	1		
CO4	2	-	3	2	2	1		
CO5	2	-	3	3	2	1		
Average	2	-	3	2	2	1		

	Total 2	Total 16 Marks Ons	Cognitive Level					
Unit No. and Title	Marks Qns.		Remember (Kn)	Understand (Un)	Apply (Ap)	Analyse (An) Evaluate (Ev)		
		-		No. of Qns. (ma	rks) and CO			
Unit-I: Introduction to Non-Linear Analysis	2	1 either or	2(2) – CO1	1 either or (16) – CO2	-	-		
Unit-II: Inelastic Analysis of Flexural Members	2	1 either or	2(2) - CO2	1 either or (16)—CO2	-	-		
Unit-III: Vibration Theory and Analysis of Flexural Members	2	1 either or	1(2) — CO3	1(2) — CO3	1 either or (16)—CO3	-		
Unit-IV: Elastic And Inelastic Analysis of Plates	2	1 either or	1(2) - CO4	1(2) — CO4	1 either or (16) — CO4	-		
Unit-V: Non-Linear Vibration and Instability	2	1 either or	1(2) - CO5	1(2)—CO5	-	1 either or (16) — CO5		
Total Qns. Nonlinear Analysis of Structures	10	5 either or	7(2)	3(2) 2 either or (16)	2 either or (16)	1 either or (16) — CO5		

Total Marks		20	80	14		38	32 16		16
Weightage		20%	80%	14%		38%	32% 16		16%
	·		We	ightage for CO	s				
	CO	1	CO2	CO3		CO4			CO5
Total Marks	20		20	20		20	20		20
Weightage	20%	Ď	20%	20%		20%		20%	

SE22234	OPTIMIZATION OF STRUCTURES	L	Τ	Р	С
		3	0	0	3

COURSEOBJECTIVES:

To study the optimization methodologies applied to structural engineering

UNIT I **BASIC PRINCIPLES AND CLASSICAL OPTIMIZATION** TECHNIQUES

Definition - Objective Function; Constraints - Equality and inequality - Linear and nonlinear Side, Non-negativity, Behaviour and other constraints – Design space – Feasible and infeasible- Convex and Concave – Active constraint – Local and global optima. Differential calculus - Optimality criteria - Single variable optimization - Multivariable optimization with no constraints- - (Lagrange Multiplier method) - with inequality constraints (Khun -Tucker Criteria).

UNIT II	LINEAR AND NON-LINEAR PROGRAMMING
LINEAR PROC	CRAMMING .

Formulation of problems -Graphical solution – Analytical methods- Standard form - Slack, surplus and artificial variables - Canonical form - Basic feasible solution - simplex method - Two phase method - Penalty method- Duality theory - Primal - Dual algorithm, Dual Simplex method.

NON LINEAR PROGRAMMING:

One Dimensional minimization methods: Unidimensional - Unimodal function -Exhaustive and unrestricted search - Dichotomous search - Fibonacci Method - Golden section method -Interpolation methods. Unconstrained optimization Techniques.

UNIT III **GEOMETRIC PROGRAMMING**

Polynomial - degree of difficulty - reducing G.P.P to a set of simultaneous equations -Unconstrained and constrained problems with zero difficulty - Concept of solving problems with one degree of difficulty.

UNIT IV DYNAMIC PROGRAMMING

Bellman's principle of optimality - Representation of a multistage decision problemconcept of sub-optimization problems using classical and tabular methods 9

STRUCTURAL APPLICATIONS UNIT V

Methods for optimal design of structural elements, continuous beams and single storied frames using plastic theory -Minimum weight design for truss members - Fully stressed design – Optimization principles to design of R.C. structures such as multi-storey buildings, water tanks and bridges.

TOTAL: 45 PERIODS

9

9

9

9

COURSE OUTCOMES:

Upon completion of the course, the students will.../ will be able to...

Apply the knowledge of engineering fundamentals to formulate and solve the **CO1:**

	engineering problems by classical optimization techniques									
CO2.	Identify, formulate and solve engineering problems by linear and non-linear									
02:	programming									
CO3:	Analyse the problem and reducing G.P.P to a set of simultaneous equations									
CO4.	Apply the Engineering knowledge to understand the concept of dynamic									
CO4:	programming									
CO5:	Design various structural elements with minimum weight									
REFERE	NCES:									
1	Iyengar.N.G.R and Gupta.S.K, "Structural Design Optimization", Affiliated									
1.	East West Press Ltd, New Delhi, 1997.									
2	Rao,S.S. "Engineering Optimization: Theory and Practice", Fourth Edition,									
۷.	Wiley Eastern (P) Ltd., 2013.									
2	Spunt, "Optimization in Structural Design", Civil Engineering and Engineering									
5.	Mechanics Services, Prentice-Hall, New Jersey 1971.									
4.	Uri Kirsch, "Optimum Structural Design", McGraw Hill Book Co. 1981.									
5	Haftka, R. T. and Gurdal, Z., Elements of Structural Optimization, Springer, 3									
Э.	rd Edition, 1992.									

CO	РО									
CO	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	3	-	-	1				
CO2	1	-	3	1	2	1				
CO3	2	-	3	1	2	1				
CO4	2	-	3	2	2	1				
CO5	2	-	3	3	2	1				
Average	2	-	3	2	2	1				

Table of specification for end semester question paper

				Cogniti Level	ve	
Unit No. and Title	Total 2Total 16MarksMarksQns.Qns.		Remember (Kn)	Understand (Un)	Apply (Ap)	Analyse (An) Evaluate (Ev)
				No. of Q	ns. (marks) and	CO
Unit-I: Basic Principles and Classical Optimization Techniques	2	1 either or	2(2) – CO1	1 either or (16) – CO1	-	-
Unit-II: Linear and Non- Linear Programming	2	1 either or	2(2) - CO2	1 either or (16) — CO2	-	-
Unit-III: Geometric Programming	2	1 either or	1(2) — CO3	1(2) — CO3	-	1 either or (16)—CO3
Unit-IV: Dynamic Programming	2	1 either or	1(2) - CO4	1(2) — CO4	1 either or (16) — CO4	-
Unit-V: Structural Applications	2	1 either or	1(2) - CO5	1(2) — CO5	1 either or (16) — CO5	

Total Qns. Optim Structures	nization of	10	5 either or	7(2)	3(2) 2 either or (16)	2 eith	er or 6)	1 either or (16)
Total Marks		20	80	14	38	32	2	16
Weightage		20%	80%	14%	38%	38% 329		16%
			Weighta	age for COs				
CO1			CO2	CO3	CO4	ŀ	CO5	
Total Marks	20		20	20	20		20	
Weightage	20%		20%	20%	20%		20%	

		<u> </u>						
SE22341	SE22341 SMART MATERIALS AND SMART STRUCTURES L T P							
COURSE	OBJECTIVES:							
• To stru	• To give an in-depth knowledge on properties of smart materials and their use in structures.							
UNIT I	UNIT I PROPERTIES OF MATERIALS AND ER AND MR FLUIDS							
Piezoelectr Memory A Embedded and Proper	Piezoelectric Materials and properties - Actuation of structural components - Shape Memory Alloys - Constitutive modeling of the shape memory effect, vibration control - Embedded actuators – Electro rheological and magneto rheological fluids - Mechanisms and Properties - Fiber Optics - Fiber characteristics - Fiber optic strain sensors.							
UNIT II	VIBRATION ABSORBERS				9			
Parallel da absorber - approach.	mped vibration absorber - Gyroscopic vibration absorber - Applications - Vibration Characteristics of mistuned syst	Act ems	ive -	vibra Analy	tion, rtical			
UNIT III	MEASURING TECHNIQUES				9			
Strain Me Capacitanc Temperatu	asuring Techniques using Electrical strain gauges - Types e – Inductance – Wheatstone bridges – Pressure transducer re Compensation – Strain Rosettes.	3 – 18 –	Res Loa	sistan ad ce	ce – lls –			
UNIT IV	CONTROL OF STRUCTURES				9			
Control m control sys Active stru	odeling of structures - Control strategies and limitations - tems: Classical control, Modern control, Optimal control and ctures in practice.	Cla 1 Di	assif gital	icatio cont	n of rol -			
UNIT V	APPLICATIONS IN CIVIL ENGINEERING				9			
Application of Shape Memory - Alloys in Bridges – Concept of Smart Bridges – Application of ER Fluids - Application of MR Dampers in Different Structures – Application of MR Dampers in Bridges and High Rise Structures – Structural Health Monitoring - Application of Optical Fibres - Concept of Smart Concrete.								
	TOTAL: 45 PERIODS							
COURSE	OUTCOMES:							

At the en	d of the course, the students will be able to:
CO1:	State the importance of various material, its properties and application.
CO2:	Summarize different forms of processing technics of smart materials.
CO3:	Design the smart materials and their structural applications.
CO4:	Make use of smart materials in various applications of Civil Engineering.
CO5:	Analyze the performance of smart materials in its application.
REFERE	NCES:
1.	Brian Culshaw, "Smart Structures and Materials", Artech House, Boston, 1996.2. Gandhi, M.V and Thompson, B.S., "Smart Materials and Structures", Chapman and Hall, 1992.
2.	Srinivasan, A.V., and Michael McFarland. D., "Smart Structures – Analysis and Design", Cambridge University Press, 2001.
3.	M V Gandhi, "Smart Materials and Structures", Chapman and Hall, 1992-05-31.
4.	Vijay K. Varadan; K. J. Vinoy; S. Gopalakrishnan," Smart Material Systems And Mems", Wiley Professional; Reference & Trade,2006.
5.	A.V. Srinivasan, D. Michael McFarland," Smart Structures", South Asian Edition, 2010.

Course	РО									
outcomes	1	2	3	4	5	6				
CO1	3	2	2	3	1	3				
CO2	2	2	1	1	-	2				
CO3	3	2	1	3	2	1				
CO4	2	1	1	3	1	1				
CO5	1	-	-	2	3	3				
СО	2	2	1	2	2	2				

	Total 2	Total 16	Cognitive Level					
Unit No. and Title	Marks Marks Qns. Qns.		Remember (Kn)	Understand (Un)	Apply (Ap)	Analyse (An)		
				No. of Qns. (ma	rks) and CO			
Unit-I: Properties of Materials and ER and MR Fluids	2	1 either or	2(2) – CO1	1 either or (16) – CO2	-	-		
Unit-II: Vibration Absorbers	2	1 either or	2(2) – CO1	1 either or (16)—CO2	-	-		
Unit-III: Measuring Techniques	2	1 either or	1(2) - CO1	1(2) - CO2	1 either or (16)—CO3	-		

Unit-IV: Contro Structures	ol of	2	1 either or	2(2) - CO1			1 eith (16) —	er or - CO4	-
Unit-V: Applica Civil Engineerin	tions in g	2	1 either or	1(2) - CO1	1((2) - CO2		-	1 either or (16) — CO5
Total Qns. Smart Materials and Smart Structures		10	5 either or	8(2)	2	2(2) either or (16)	2 ei (ther or 16)	-
Total Marks		20	80	16		36		32	16
Weightage		20%	80%	16%		36%	3	32%	16%
			We	eightage for CO	s				
	CO1		CO2	CO3	CO3 CO4		04		205
Total Marks	1	6	36	16		16			16
Weightage	16	%	36%	16%		16%		1	6%

SF22342	DESIGN OF MASONRY STRUCTURES	L			С		
522342		3	0	0	3		
COURSE	OBJECTIVES:						
• To	design, detail and retrofit a masonry structure.						
UNITI	INTRODUCTION				9		
Introduction – Masonry construction – National and International perspective – Historical development, Modern masonry, Material Properties – Masonry units: clay and concrete blocks, Mortar, grout and reinforcement, Bonding patterns, Shrinkage and differential movements.							
UNIT II	DESIGN OF COMPRESSION MEMBER				9		
Principles Compressiand Plaster	of masonry design, Masonry standards: IS 1905 and othe on – Prism strength, Eccentric loading -Kern distance. Structur rs, Retaining Wall, Pier and Foundation – Prestressed masonry.	ers - al V	- M Vall,	asonı , Colı	y in 1mns		
UNIT III	DESIGN OF MASONRY UNDER LATERAL LOADS				9		
Masonry u Masonry N and rigid d axial loads	Inder Lateral loads – In-plane and out-of-plane loads, Ductil Members Analysis of perforated shear walls, Lateral force dis iaphragms. Behaviour of Masonry – Shear and flexure – Comb – Reinforced and unreinforced masonry – Infill masonry.	ity tribu oineo	of R utior d be	Reinfo n -fle nding	vrced xible g and		
UNIT IV	EARTHQUAKE RESISTANT DESIGN OF MASONRY STRUCTURES				9		
Structural design of Masonry – Consideration of seismic loads –concepts of confined masonry – Cyclic loading and ductility of shear walls for seismic design -Code provisions-Working and Ultimate strength design – In-plane and out-of-plane design criteria for load-bearing and infills, connecting elements and ties.							
UNIT V	RETROFITTING OF MASONRY				9		

Seismic evaluation and Retrofit of Masonry – In-situ and non-destructive tests for masonry – properties – Repair and strengthening of techniques.

TOTAL: 45 PERIODS

COURSE	COUTCOMES:							
At the end of the course, the students will be able to:								
CO1:	State the properties of a masonry unit and the various components.							
CO2:	Describe the different form loads in masonry units.							
CO3:	Design a masonry structure for compression and lateral loads.							
CO4:	Make use of retrofitting techniques for repair and strengthening of masonry structures.							
CO5:	Analyse the effect of earthquake resistant in masonry wall.							
REFERE	NCES:							
1.	Drysdale, R. G. Hamid, A. H. and Baker, L. R, "Masonry Structures: Behaviour & Design", Prentice Hall Hendry, 1994.							
2.	A.W. Hendry, B.P. Sinha and Davis, S. R, "Design of Masonry Structures", E & FN Spon, UK, 1997.							
3.	R.S. Schneider and W.L. Dickey, "Reinforced Masonry Design", Prentice Hall, 3rd edition, 1994.							
4.	Paulay, T. and Priestley, M. J. N., "Seismic Design of Reinforced Concrete and Masonry Buildings", John Wiley, 1992.							
5.	A.W. Hendry, "Structural Masonry", 2nd Edition, Palgrave McMillan Press, 1998.							

Mapping of Course Outcomes to Programming Outcomes

Course	РО										
outcomes	1	2	3	4	5	6					
CO1	3	2	2	3	1	3					
CO2	3	2	1	1	-	2					
CO3	3	2	1	3	2	1					
CO4	2	3	1	3	1	1					
CO5	3	-	-	2	3	3					
Average	3	2	1	2	2	2					

		Total 2	Total 16			Cognitiv	ve Level			
Unit No. and '	Title	Marks Qns.	Marks Qns.	Remember (Kn)	U	nderstand (Un)	App (A	ply p)	Analyse	(An)
					No.	of Qns. (ma	rks) and	CO		
Unit-I: Introduc	ction	2	1 either or	2(2) – CO1	(1	either or 6) – CO2	r or - CO2		-	
Unit-II: Design Compression Me	of ember	2	1 either or	2(2) – CO1	1 (1	either or 6) — CO2		-	-	
Unit-III: Design Masonry Under Loads	n of Lateral	2	1 either or	1(2) — CO1	1	(2) — CO2	1 eith (16)—	her or CO3	-	
Unit-IV: Eartho Resistant Design Masonry Structu	quake 1 of 1res	2	I either or	1(2) – CO1	1((2) — CO2			1 eithe (16) — CC	er or)5
Unit-V: Retrofitt Masonry	ting of	2	1 either or	1(2) - CO1	I(2)—CO2	1 eith (16) —	ner or CO4	-	
Total Qns. Desig Masonry Structu	Fotal Qns. Design of Masonry Structures		5 either or	7(2)	2	3(2) either or (16)	2 either or (16)		-	
Total Marks	Total Marks		80	14		38	3	2	16	
Weightage		20%	80%	14%		38%	32	.%	16%	6
			We	eightage for CO	s					
	CO	D1	CO2	CO3		CO4	ŀ	CO5		
Total Marks	1	4	38	16		16			16	
Weightage	14	%	38%	16%		16%		16%		

Table of specification for end semester question paper

SE22343	THEORY OF PLATES AND SHELLS	L	Т	Р	С					
COURSE	OBJECTIVES:									
• To	study the behaviour and design of plates, shell, folded plates									
UNIT I	INTRODUCTION TO PLATES				9					
Plate equa	tion in Cartesian and polar co-ordinates for isotropic rectang	gula	r an	d cir	cular					
plates - Ar	alysis of rectangular and circular plates with different bounda	ry c	cond	itions	and					
loadings -	Analysis of circular plates with opening.									
UNIT II	ADVANCED TOPICS IN PLATES				9					
Cylindrica	bending of long rectangular plates with different boundar	y c	ondi	tions	and					
loadings -	Analysis of orthotropic plates, Design of plates.									
UNIT III PLATES ON ELASTIC FOUNDATION										
Differential equation - Rectangular and continuous plates on elastic foundation.										
UNIT IV INTRODUCTION TO SHELLS										

Classification of shells - Properties of curves - Membrane and bending theory for singly curved and doubly curved shells - Beam theory of cylindrical shells - Lundgren's method. Design of cylindrical shells.

UNIT V FOLDED PLATES

9

Folded Plate structures, Various types, structural behaviour, types, design by ACI - ASCE Task Committee method – pyramidal roof- Prismoidal roof. Analysis and principles of design

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the en	d of the course, the students will be able to:
CO1:	Have fundamental knowledge in the analysis of plates, folded plates and shells.
CO2:	Explain the various loads acting of plates, shell, and floded plates and their structural behavior.
CO3:	Analyse the plates, folded plates and concrete shells
CO4:	Design the plates, folded plates and concrete shells
CO5:	Evaluate the performance of the plates resting on elastic foundation
REFERE	NCES:
1.	Timoshenko, S.P. Theory of Plates and Shells, Mc Graw Hill Book Company, New York, USA (1987).
2.	Ramaswamy, G.S. Design and Construction of Concrete Shell Roofs, CBS Publishers, India (2005).
3.	Rudolph Szilard. Theories and Application of Plate Analysis, John Wiley & Sons, USA (2004).
4.	Billington.D.P, "Thin Shell Concrete Structures", McGraw Hill Book Co., New York, ASCE Manual No.31, Design of Cylindrical Shells, 1986.
5.	Varghese P.C., Design of Reinforced Concrete Shells and Folded Plates, PHI Learning Pvt. Ltd., 2010.

Mapping of Course Outcomes to Programming Outcomes

Course		РО										
outcomes	1	2	3	4	5	6						
CO1	3	3	1	3	-	-						
CO2	3	2	2	3	1	-						
CO3	3	-	2	3	-	-						

CO4	3	3	3	3	3	-
CO5	3	3	3	3	3	-
СО	3	3	2	3	2	-

Fable of specification	for end se	emester o	question	paper
-------------------------------	------------	-----------	----------	-------

		Total?	Total			Cogni	tive Level		
Unit No. and	Title	Marks	16	Remember	Unde	erstand	Apply	Analyse	
		Qns.	Marks	(Kn)	(U	(n)	(Ap)	(An)	
			Qns.						
					No. of	Qns. (m	arks) and (20	
Unit-I: Introduc Plates	tion to	2	1 either or	2(2) – CO1	1 ei (16) -	ther or - CO2	-	-	
Unit-II: Advand Topics in Plates	ced	2	1 either or	2(2) – CO1	1 eit (16)-	ther or — CO3	-	-	
Unit-III: Plates Foundation	Unit-III: Plates on Elastic Foundation		1 either or	1(2) — CO1	1(2))—CO2	1 either ((16)—CC	or	
Unit-IV: Introduction to Shells		2	1 either or	1(2) - CO1	1(2)	$\begin{array}{c c} 1(2) - CO2 & 1 \text{ eitheror} \\ (16) - CO4 \end{array}$		- 	
Unit-V: Folded Plates		2	1 either or	1(2)- CO1	1(2) -	2) — CO2		1 either or (16) — CO5	
Total Qns. Desig Plates and Shells	gn of s	1 0	5 either or	7(2)	3 2 eiti (1	3(2) 2 either or (16) 2 either or (16) 2 either or (16)		pr -	
Total Marks		20	80	14	3	88	32	16	
Weightage		20%	80%	14%	38	3%	32%	16%	
				Weightage for	or COs		1		
C		201	СО	(0		CO	СО	
			2		3		4	5	
Total Marks		14	22		6		32	16	
Weightage	1	4%	22%	1	5%	32%		16 %	

SE22344	DIGITAL CONSTRUCTION	L	Т	Р	С
		3	0	0	3
COURSEC	BJECTIVES:				
 To k 	earn basic concepts of BIM for construction. earn and acquire knowledge in the BIM-based construction de- inderstand the challenges in BIM implementation. learn and acquire knowledge in BIM-based constru- nologies. earn and acquire knowledge in Modern Digital Technologies i	sign ction n Co	pro n a onsti	cess. utoma ruction	ation n.

UNITI INTRODUCTION TO BIM FOR CONSTRUCTION

Fundamentals of BIM – terminology, CAD & BIM. IFCs, schemas, interoperability, parametric modeling.

UNIT II DEVELOPMENT OF DESIGN PROCESS

BIM-based design process and analysis - design coordination. BIM-based construction process -4D, 5D, nD BIM.

UNIT III CHALLENGES IN BIM IMPLEMENTATION

BIM-based operation issues – facility management. Drivers and barriers in BIM adoption, BIM global practices.

UNIT IV CONSTRUCTION AUTOMATION

Automation in design and construction, virtual experiments – augmented reality, virtual reality, use of sensors in construction.

UNIT V MODERN DIGITAL TECHNOLOGIES IN CONSTRUCTION

9

9

9

9

Robots in construction, autonomous robots, and 3D printing technology in construction. Drones for Construction monitoring, Internet of Things, Smart Manufacturing, etc.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

CO1:	State the Fundamentals of BIM, its global practices, use of sensors and modern digital technologies in construction.
CO2:	Explain the construction design process using BIM.
CO3:	Develop the challenges in BIM implementation.

CO3: Develop the channenges in Biwi implementation.

CO4: Identify the automation techniques in construction.

CO5: Examine the modern digital technologies in construction.

REFERENCES:

1.	Daniotti, Bruno, Gianinetto, Marco, Della Torre, Stefano (Eds.), Digital											
	Transformation of the Design, Construction and Management Processes of the Built											
	Environment, Research for Development, Springer Open, 2020.											
2.	Dominik Holzer, The BIM Manager's Handbook: Guidance for Professionals in											
	Architecture, Engineering, and Construction, Wiley, 2016.											
3.	Erica Epstein, Implementing Successful Building Information Modeling, Artech											
	House, 2012.											
4.	Javad Majrouhi Sardroud, Automation in Construction Management, Scholars'											
	Press, 2014.											
5.	Thomas R. Kurfess, Robotics and Automation Handbook, CRC Press, 2018.											

Course		РО										
outcomes	1	2	3	4	5	6						
CO1	3	2	2	3	1	3						
CO2	3	2	1	1	-	2						
CO3	3	2	1	3	2	1						
CO4	2	3	1	3	1	1						
CO5	3	-	-	2	3	3						
СО	3	2	1	2	2	2						

		Total 2	Total 16			Cognitiv	e Leve	el	
Unit No. and	l'itle	Marks	Marks	Remember		Understand	1	Apply	Analyse
		Qns.	Qns.	(Kn)		(Un)		(Ap)	(An)
					No.	of Qns. (ma	irks) a	nd CO	1
Unit-I: Introduc BIM for Constru	ction to action	2	1 either or	2(2) – CO1	1 (1	either or 6) – CO2	-		-
Unit-II: Develo Design Process	pment of	2	1 either or	2(2) – CO1	1 (10	either or 6) — CO2	or - CO2		-
Unit-III: Challenges in BIM Implementation		2	1 either or	1(2) — CO1	1(2) — CO2	I ei (16)-	ither or —CO3	-
Unit-IV: Construction Automation		2	1 either or	2(2) - CO1	-		I either or (16) — CO4		-
Unit-V: Modern Technologies in Construction	Digital	2	1 either or	2(2) - CO1	-		-		I either or (16) — CO5
Total Qns. Digital Design and Construction		10	5 either or	9(2)	2	1(2) either or (16)	2 either or (16)		-
Total Marks	Total Marks		80	18		34		32	16
Weightage		20%	80%	18%		34%	3.	2%	16%
	-		We	ightage for COs	3				
	CO1		CO2	CO3		CO4	CO4		CO5
Total Marks	1	8	34	16		16			16
Weightage	18	%	34%	16%		16%	16%		16%

SE22351	STRUCTURAL HEALTH MONITORING	L	Т	Р	С		
		3	0	0	3		
COURSE OBJECTIVES:							
• To	make the students familiar with various structural health mo-	nito	ring	tools	and		

techniques.	
UNIT I INTRODUCTION TO STRUCTURAL HEALTH MONITORING	9
Need for SHM, Structural Health Monitoring versus Non-Destructive Evaluation, Metho of SHM Local & Global Techniques for SHM, Short & Long-Term Monitoring, Active Passive Monitoring, Remote Structural Health Monitoring- Advantages of SHM Challenges in SHM.	ods 2 & I -
UNIT II SENSORS AND INSTRUMENTATION FOR SHM	9
Sensors for measurements: Electrical Resistance Strain Gages, Vibrating Wire Str Gauges, Fiber Optic Sensors, Temperature Sensors, Accelerometers, Displacem Transducers, Load Cells, Humidity Sensors, Crack Propagation Measuring Sensor Corrosion Monitoring Sensors, Pressure Sensors, Data Acquisition – Data Transmissio Data Processing – Storage of processed data - Knowledgeable information processing.	ain ent ors, on -
UNIT III STATIC AND DYNAMIC MEASUREMENT TECHNIQUES FOR SHM	9
Static measurement - Load test, Concrete core trepanning, Flat jack techniques, Static response measurement, Dynamic measurement -Vibration based testing- Ambie Excitation methods, Measured forced Vibration-Impact excitation, step relaxation to shaker excitation method.	atic ent est,
UNIT IV DAMAGE DETECTION	9
Damage Diagnostic methods based on vibrational response- Method based on mo frequency/shape/damping, Curvature and flexibility method, Modal strain energy meth Sensitivity method, Baseline-free method, Cross-correlation method, Damage Diagnos methods based on wave propagation Methods-Bulk waves/Lamb waves, Reflection a transmission, Wave tuning/mode selectivity, Migration imaging, Phased array imagi Focusing array/SAFT imaging.	dal od, stic and ng,
UNIT V DATA PROCESSING AND CASE STUDIES	9
Advanced signal processing methods -Wavelet, Hilbert-Huang transform, Neural networ Support Vector Machine Principal component analysis, Outlier analysis. Applications SHM on bridges and buildings, case studies of SHM in Civil/ Structural engineering.	ks, of
TOTAL: 45 PERIO	DS
COURSE OUTCOMES:	
At the end of the course, the students will be able to:	
CO1: State the different types of structural health inspection.	
CO2: Explain the need, importance and instrumentation of structural heat monitoring.	ılth
CO3: Identify the health of the Structure using the advanced techniques.	_

CO5:	Analyse the accuracy of various health monitoring techniques.
REFERE	ENCES:
1.	Douglas E Adams, Health Monitoring of Structural Materials and Components Methods with Applications, Wiley Publishers, 2007
2.	Hua-Peng Chen, Structural Health Monitoring of Large Civil Engineering Structures, Wiley Publishers, 2018
3.	Ansari, F Karbhari, Structural health monitoring of civil infrastructure systems, V.M,Woodhead Publishing, 2009
4.	J. P. Ou, H. Li and Z. D, "Duan Structural Health Monitoring and Intelligent Infrastructure", Vol1, Taylor and Francis Group, London, UK, 2006.
5.	Victor Giurglutiu, "Structural Health Monitoring with Wafer Active Sensors", Academic Press Inc, 2007.

Course outcomes	РО							
Course outcomes	1	2	3	4	5	6		
CO1	1	1	1	1	1	1		
CO2	1	-	-	-	1	-		
CO3	2	2	2	2	1	1		
CO4	2	3	2	2	1	1		
CO5	2	3	3	2	1	1		
СО	1	2	2	1	1	1		

	Total 2	Total 16		Cognitiv	ve Level	
Unit No. and Title	Marks Qns.	Marks Qns.	Remember (Kn)	Understand (Un)	Apply (AP)	Analyse (An)
				No. of Qns. (ma	rks) and CO	•
Unit-I: Introduction to Structural Health Monitoring	2	1 either or	2(2) – CO1	1 either or (16) – CO2	-	-
Unit-II: Sensors and Instrumentation For SHM	2	1 either or	2(2) – CO1	1 either or (16) – CO2	-	-
Unit-III: Static and Dynamic Measurement Techniques for SHM	2	1 either or	1(2) – CO1	1(2) – CO2	-	1 either or (16) – CO5
Unit-IV: Damage Detection	2	I either or	1(2) – CO1	1(2) – CO2	-	1 either or (16) – CO4
Unit-V: Data Processing and Case Studies	2	1 either or	1(2) - CO1	1(2) - CO2	1 either or (16) – CO3	

Total Qns. Structural Health Monitoring		10	5 either or	7(2)	2 eit	3(2) her or (16)	1 eith (10	er or 5)	2 either or (16)
Total Marks		20	80	14		38	16		32
Weightage		20%	80%	14%		38% 169		%	32%
			We	eightage for CO)s				
	CO1		1 CO2			CO4			CO5
Total Marks	1	0	20	22	32		32		16
Weightage	14	%	38%	16%		16%		16%	

1							
SE22352	PERFORMANCE OF STRUCTURES WITH SOIL STRUCTURE INTERACTION	L	Т	Р	С		
		3	0	0	3		
COURSE	OBJECTIVES:						
• To study the concept of soil-structure – interaction in the analysis and design of structures.							
UNITI	SOIL-FOUNDATION INTERACTION				9		
Introductio	n to soil-foundation interaction problems – Soil behavio	ur ·	- F	ound	ation		
behaviour	Interface behaviour- Scope of soil foundation interaction analy	vsis-	soil	l resp	onse		
models-El	astic continuum- Two parameter elastic models- Elastic-plastic	bel	navi	our- [Гime		
dependent	behaviour.						
1							
UNIT II BEAM ON ELASTIC FOUNDATION- SOIL MODELS							
Infinite beam – Two-parameters models – Isotropic elastic half space model – Analysis o							
beams of f	nite length – combined footings.			•			
UNIT III	PLATES ON ELASTIC CONTINUUM				9		
Thin and the	nick rafts – Analysis of finite plates- Numerical analysis of finit	e pl	ates.				
UNIT IV	ANALVSIS OF AVIALLY AND LATERALLY LOADER	DI	I FS		0		
	AND PILE CROUPS	, , ,					
Flastic ana	lysis of single nile – Theoretical solutions for settlement and lo	h her	dictr	ibutic	ne _		
Analysis o	f nile group - Interaction analysis - I god distribution in group		ith r	ioid c	an _		
L oad defle	ction prediction for laterally loaded piles. Subgrade reaction a	nd e	lacti	c ana	lveie		
Interactio	on analysis — Dila raft system	nu c	lasti	c ana	19515		
- Interactio	ni anarysis – i ne-rart system.						
UNIT V	GROUND-FOUNDATION-STRUCTURE INTERACTION	N			9		
Effect of s	tructure on ground-foundation interaction – Static and dynam	nic 1	oads	- Co	ntact		
pressure and its estimation – Estimation of the settlement from the constitutive laws – Free-							
field response – Kinetic interaction – Inertial interaction – Ground improvement techniques							

– Application of Plaxis software.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the en	d of the course, the students will be able to:
CO1:	State the concept of soil structure interaction, soil models, plates on elastic Continuum, laterally loaded piles and pile groups.
CO2:	Explain the static analysis of infinite and finite beams resting on elastic foundation
CO3:	Select suitable models based on the performances of structures with soil structure Interaction.
CO4:	Analyze the beams on elastic foundation, finite plates, axially loaded piles and pile groups
CO5:	Examine the settlement from the constitutive laws problems.
REFERE	INCES:
1.	John P. Wolf, (1985) Soil-structure interaction, Prentice Hall, 198.
2.	Soil Structure Interaction, the real behaviour of structures, Institution of Structural Engineers, 1989.
3.	A.P.S. Selvadurai, Elastic Analysis of Soil Foundation Interaction, Developments in Geotechnical Engg.vol-17, Elsevier Scientific Publishing Co., 1979.
4.	Prakash, S., and Sharma, H. D., "Pile Foundations in Engineering Practice" John Wiley & Sons, New York, 1990.
5.	Rolando P. Orense, Nawawi Chouw & Michael J. Pender – Soil-Foundation- Structure Interaction, CRC Press, Taylor & Francis Group, London, UK, 2010.

Course	РО									
outcomes	1	2	3	4	5	6				
CO1	3	2	2	3	1	3				
CO2	3	2	1	1	-	2				
CO3	3	2	1	3	2	1				
CO4	2	3	1	3	1	1				
CO5	3	-	-	2	3	3				
СО	3	2	1	2	2	2				

		T-4-1 0	T-4-116		Cognitive 1	Level	
Unit No. and '	Unit No. and Title		Marks Qns.	Remember (Kn)	Understand (Un)	Apply (Ap)	Analyse (An)
				N	o. of Qns. (mark	s) and CO	
Unit-I: Soil-Fou Interaction	undation	2	1 either or	2(2) – CO1	1 either or (16) – CO2	-	-
Unit-II: Beam (Foundation- Soil	On Elastic I Models	2	I either or	2(2) – CO1		-	1 either or (16)—CO4
Unit-III: Plates Continuum	on Elastic	2	1 either or	1(2) — CO1	1(2) — CO2	I either or $(16) - CO3$	-
Unit-IV: Analy Axially and Late Loaded Piles and Groups	sis of erally 1 Pile	2	I either or	1(2) – CO1	1(2) — CO2	1 either or (16) — CO3	-
Unit-V: Ground- Foundation-Stru Interaction	cture	2	1 either or	1(2) - CO1	1(2)—CO2	-	I either or (16) — CO5
Total Qns. Performance of Structures With Soil Structure Interaction		10	5 either or	7(2)	3(2) 1 either or (16)	2 either or (16)	-
Total Marks		20	80	14	22	32	32
Weightage		20%	80%	14%	22%	32%	32%
·			Weightage	for COs			
	CC	01	CO2	CO3	CO4		CO5
Total Marks	14	4	22	32	16		16
Weightage	14	%	22%	32%	16%		16%

rable of specification for end semester question pape	Table of specification	for end	semester	question	paper
---	------------------------	---------	----------	----------	-------

SE22353	DESIGN OF SUB STRUCTURES	L	Т	Р	С		
		3	0	0	3		
COURSEOBJECTIVES:							
• To of o spe	gain familiarity with different types of foundation and understa design of shallow foundations, deep foundations, designing well cial foundations.	nd ti I, ma	he co achir	oncep ne an	ots d		
UNITI	SHALLOW FOUNDATIONS				9		
Soil investigation – Basic requirements of foundation – Types and selection of foundations. Bearing capacity of soil – plate load test – Design of reinforced concrete isolated, strip, combined and strap footings – mat foundation.							
UNIT II	PILE FOUNDATIONS				9		
Introduction – Types of pile foundations – load carrying capacity – pile load test – structural design of straight piles –configuration of piles- different shapes of piles cap – structural design of pile cap.							

UNIT III	WELL FOUNDATIONS	9					
Types of well foundation - Grip length - load carrying capacity - construction of wells -							
Failures a	nd Remedies – Design of well foundation – Lateral stability.						
UNIT IV MACHINE FOUNDATIONS							
Introducti	on – Types of machine foundation – Basic principles of design of mach	nine					
foundation	n – Dynamic properties of soil – vibration analysis of machine foundatio	n –					
and constr	ruction details – vibration isolation.	ient					
UNIT V	SPECIAL FOUNDATIONS	9					
Foundatio Foundatio walls.	n on expansive soils – choice of foundation – under-reamed pile foundat n for concrete Towers, chimneys – Design of anchors- Reinforced earth retain	ion. 1ing					
	TOTAL: 45 PERIC	DS					
COURSE	OUTCOMES:						
At the end	d of the course, the students will be able to:						
CO1:	List different types of foundation and its importance.						
CO2:	Explain the concepts of design of shallow foundations, deep foundations, designing well, machine and special foundations.						
CO3:	Identify suitable foundation based on soil condition.						
CO4:	Design reinforced concrete shallow foundations, pile foundations, well foundations, and machine foundations.						
CO5:	Analyse the load carrying capacity of each type of foundation.						
REFERE	NCES:						
1.	Bowles. J.E., "Foundation Analysis and Design", McGraw Hill Publishing New York, 1997.	co.,					
2.	Swamy Saran, Analysis and Design of substructures, Oxford and I Publishing Co. Pvt. Ltd., 2006.	BH					
3.	Tomlinson.M.J, "Foundation Design and Construction", Longman, S Edition, New Delhi, 1995.	ixth					
4.	Varghese.P.C, "Design of Reinforced Concrete Foundations" – PHI learn private limited, New Delhi – 2009.	ning					
5.	Swami Saran, "Analysis And Design Of Substructures", Limit State Design, Second Edition, 2018.						

Course	РО							
Outcomes	1	2	3	4	5	6		
CO1	1	2	2	-	3	3		
CO2	2	2	1	3	2	1		
CO3	2	1	1	-	3	2		
CO4	2	3	-	2	2	3		
CO5	1	1	-	2	2	3		
СО	2	2	1	2	2	2		

Unit No. and Title		Total 2	Total 2 Total 16		Cognitive Level					
		MarksQ ns.	MarksQ ns.	Remember (Kn)	Ur	nderstand (Un)	Ap (A	ply .p)	Analyse (An)	
					No. o	of Qns. (ma	rks) and	l CO		
Unit-I: Shallow Foundations		2	1 either or	2(2) – CO1	1 (16	either or 6) – CO2	$\begin{array}{c c} 1 & \text{either or} \\ (16) - CO3 \end{array}$		-	
Unit-II: Pile Fo	undations	2	1 either or	2(2) – CO1	1 (16	either or 5) — CO2	-		-	
Unit-III: Well Foundations		2	1 either or	1(2) — CO1	1(2	2) — CO2	$\begin{array}{c} 1 \text{ either or} \\ (16) - \text{CO3} \end{array}$		-	
Unit-IV: Machine Foundations		2	1 either or	1(2) - CO1	1(2	2) — CO2	1 either or (16) — CO4		-	
Unit-V: Special Foundations		2	1 either or	1(2) - CO1	1(2	2)—CO2	-		1 either or (16) — CO5	
Total Qns. Design of Sub Structures		10	5 either or	7(2)	1 0	3(2) either or (16)	3 either or (16)		-	
Total Marks		20	80	14		22	48		16	
Weightage		20%	80%	14%		22%	22% 48%		16%	
Weightage for COs										
CO		01	CO2	CO3	CO4		CO5			
Total Marks	14	4	22	32		16			16	
Weightage 14		%	22%	32%		16%		16%		

SE22354	DESIGN OF BRIDGES	L	Т	Р	С				
COURSE	COURSEOBJECTIVES:								
• To bri	• To study the loads, forces on bridges and design principles of several types of bridges.								
UNITI	INTRODUCTION				9				

Introduction-Selection of Site and Initial Decision Process - Classification of Bridges-General Features of Design- Standard Loading for Bridge Design as per different codes -Road Bridges – Railway Bridges - Design Codes - Working Stress Method- Limit State Method of Design - Standard live loads, other forces acting on bridges & general design considerations.

UNIT II SUPERSTRUCTURES

Selection of main bridge parameters, design methodologies -Choices of superstructure types - Orthotropic plate theory, load distribution techniques - Grillage analysis - Finite element analysis - Different types of superstructure (RCC and PSC); Longitudinal Analysis of Bridge - Transverse Analysis of Bridge

UNIT III BRIDGE DESIGN PRINCIPLES

Analysis and Design of RCC solid slab culverts -Design of RCC Tee beam and slab bridges - Design principles of continuous girder bridges, box girder bridges, balanced cantilever bridges – Arch bridges – Box culverts – Segmental bridges–Design principles only.

UNIT IV SUBSTRUCTURE, BEARINGS AND DECK JOINTS

9

9

9

9

Design of bridge bearings and substructure-Substructure design: piers and abutments of different types - Foundations: Shallow foundations, deep foundations, piles, wells and pneumatic caissons.

UNIT V PRESTRESSED CONCRETE BRIDGES & STEEL BRIDGES

Design principles of PSC bridges – PSC girders –Design principles of steel bridges – Plate girder bridges – Box girder bridges – Truss bridges – Vertical and Horizontal stiffeners – Launching of girder in steel truss bridge.

Prestressed concrete bridges: simple spans, continuous decks, anchorage of tendons and grouting of tendons – Critical studies of failure of major bridges.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the students will be able to: State the basics, components, and the concepts of moving loads on the various **CO1:** types of bridges. Describe the types of load acting including heavy moving vehicle loadings and **CO2:** the different load combinations. Identify the maximum shear force and bending moment and other important **CO3:** internal forces for the types of bridges. Design bridge bearings, substructure, prestressed concrete bridges and steel **CO4**: bridges. Analyze the critical elements and check for stability requirements in structures **CO5**: as well as substructures. **REFERENCES:**

1.	Jagadeesh.T.R. and Jayaram.M.A., "Design of Bridge Structures", Second Edition, Prentice Hall of IndiaPvt. Ltd. 2009.
2.	Johnson Victor, D. "Essentials of Bridge Engineering", Sixth Edition, Oxford and IBH Publishing Co. New Delhi, 2018.
3.	Ponnuswamy, S., "Bridge Engineering", Third Edition, Tata McGraw Hill, 2017.
4.	Raina V.K." Concrete Bridge Practice" Tata McGraw Hill Publishing Company, New Delhi,1991.
5.	Design of Highway Bridges, Richard M. Barker & Jay A. Puckett, John Wiley & Sons, Inc., 2007

Course	РО							
outcomes	1	2	3	4	5	6		
CO1	3	3	1	3	-	-		
CO2	3	2	2	3	1	-		
CO3	3	-	2	3	-	-		
CO4	3	3	3	3	3	-		
CO5	3	3	3	3	3	-		
СО	3	3	2	3	2	-		

	Total 2	Total 16	Cognitive Level				
Unit No. and Title	Marks Qns.	Marks Qns.	Remember (Kn)	Understand (Un)	Apply (Ap)	Analyse (An)	
				No. of Qns. (mark	ks) and CO	•	
Unit-I: Introduction	2	1 either or	2(2) – CO1	1 either or (16) – CO2	-	-	
Unit-II: Superstructures	2	1 either or	2(2) – CO1		1 either or (16)—CO3	-	
Unit-III: Bridge Design Principles	2	1 either or	1(2) — CO1	1(2) — CO2	1 either or $(16) - CO3$	-	
Unit-IV: Substructure, Bearings and Deck Joints	2	1 either or	1(2) - CO1	-	-	1 either or (16) — CO5	
Unit-V: Prestressed Concrete Bridges & Steel Bridges	2	1 either or	2(2) - CO1	1(2)—CO2	1 either or (16) — CO4	-	
Total Qns. Design of Bridges	10	5 either or	8(2)	2(2) 1either or (16)	3 either or (16)	-	
Total Marks	20	80	16	20	48	16	
Weightage	20%	80%	16%	20%	48%	16%	
Weightage for COs							
-------------------	-----	-----	-----	-----	-----	--	--
	CO1	CO2	CO3	CO4	CO5		
Total Marks	16	20	32	16	16		
Weightage	16%	20%	32%	16%	16%		

AUDIT COURSES

AC22101	ENGLISH FOR RESEARCH PAPER WRITING	L	Т	P	C
		2	0	0	0
COURSEOBJE	CTIVES:				
• Teach ho	w to improve writing skills and level of readability				
• Tell about	t what to write in each section				
• Summari	ze the skills needed when writing a Title				
• Infer the	skills needed when writing the Conclusion				
• Ensure th	e quality of paper at very first-time submission				
UNIT I	INTRODUCTION TO RESEARCH PAPER WRITIN	G			6
Planning and Pre	eparation, Word Order, Breaking up long sentences, Structu	ıring	g Pai	ragra	phs
and Sentences,	Being Concise and Removing Redundancy, Avoiding	Am	bigu	iity	and
Vagueness.					
UNIT II	PRESENTATION SKILLS				6
Clarifying Who	Did What, Highlighting Your Findings, Hedging	and	Cri	ticiz	ing,
Paraphrasing and	l Plagiarism, Sections of a Paper, Abstracts, Introduction.				
UNIT III	TITLE WRITING SKILLS				6
Key skills are ne	eded when writing a Title, key skills are needed when writ	ting	an A	Abstr	act,
key skills are need	eded when writing an Introduction, skills needed when write	ting	a Re	eviev	v of
the Literature, M	ethods, Results, Discussion, Conclusions, The Final Check				
UNIT IV	RESULT WRITING SKILLS				6
Skills are needed	l when writing the Methods, skills needed when writing th	ne R	esul	ts, sł	xills
are needed wh	en writing the Discussion, and skills are needed wh	nen	writ	ing	the
Conclusions.					
UNIT V	VERIFICATION SKILLS				6
Useful phrases, o	checking Plagiarism, how to ensure paper is as good as it c	oulc	l pos	sibly	be /
the first- time su	bmission.				
	ΤΟΤΑΙ	1:3) PE	RIC	DS
COURSE OUT	COMES:				
Upon completio	n of the course, the students will/ will be able to				
CO1: Unde	rstand that how to improve your writing skills and level of	read	labil	ity	
CO2: Learn	Learn about what to write in each section				
CO3: Unde	Understand the skills needed when writing a title				
CO4: Understand the skills needed when writing the conclusion					
CO5: Ensure the good quality of paper at very first-time submission					
REFERENCES	:				
Adria	in Wallwork , English for Writing Research Papers, Spri	nge	r Ne	w Y	ork
¹ . Dord	recht Heidelberg London, 2011.				

2.	Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006.
3.	Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998.

AC22102	CONSTITUTION OF INDIA	L	Т	Р	С	
		2	0	0	0	
COURSEORIECTIVES						

Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.

To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional Role and entitlement to civil and economic rights as well as the emergence nation hood in the early years of Indian nationalism.

To address the role of socialism in India after the commencement of the Bolshevik Revolutionin1917 and its impact on the initial drafting of the Indian Constitution

UNIT I HISTORY OF MAKING OF THE INDIAN CONSTITUTION				
History, Drafting Committee, (Composition & Working)				
UNIT II	PHILOSOPHY OF THE INDIAN CONSTITUTION	5		

UNIT II	PHILOSOPHY OF THE INDIAN CONSTITUTION
Preamble, Salie	nt Features

UNIT III CONTOURS OF CONSTITUTIONAL RIGHTS AND DUTIES 5

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

5

ORGANS OF GOVERNANCE UNIT IV

Parliament, Composition, Qualifications and Disgualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions 5

UNIT V LOCAL ADMINISTRATION

District's Administration head: Role and Importance Municipalities: Introduction, Mayor and role of Elected Representative, CEO, Municipal Corporation. Pachavati raj: Introduction, PRI: Zila Pachayat. Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy(Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

UNIT VI	`ELECTION COMMISSION	5				
Election Comm	Election Commission: Role and Functioning. Chief Election Commissioner and Election					
Commissioners - Institute and Bodies for the welfare of SC/ST/OBC and women.						
	TOTAL:30 PER	ODS				
COURSE OUTCOMES:						
Upon completi	on of the course, the students will / will be able to					

epon con	pretion of the course, the students whill, while to use to
CO1:	Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics
CO2:	Discuss the intellectual origins of the framework of argument that informed the

	conceptualization of social reforms leading to revolution in India.		
	Discuss the circumstances surrounding the foundation of the Congress Socialist		
CO3:	Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of		
	the proposal of direct elections through adult suffrage in the Indian Constitution		
CO4:	Discuss the passage of the Hindu Code Bill of 1956		
REFERE	REFERENCES:		
1.	The Constitution of India,1950(Bare Act),Government Publication.		
2	Dr.S.N.Busi, Dr.B. R.Ambedkar framing of Indian Constitution, 1 st Edition,		
۷.	2015.		
3.	M.P. Jain, Indian Constitution Law, 7 th Edn., Lexis Nexis,2014.		
4.	D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.		

AC22201	DISASTER MANAGEMENT	L	Τ	P	C	
		2	0	0	0	
COURSEOBJECTIVES:						
 Summari 	ze basics of disaster					
• Explain a critical understanding of key concepts in disaster risk reduction ar humanitarian response						
• Illustrate multiple	disaster risk reduction and humanitarian response policy as perspectives	nd p	oracti	ice f	rom	
Describe relevance	an understanding of standards of humanitarian response in specific types of disasters and conflict situations	se a	nd j	pract	ical	
Develop	the strengths and weaknesses of disaster management appro	bach	les			
UNIT I	INTRODUCTION				6	
Disaster: Definit	ion, Factors and Significance; Difference between Hazar	d A	nd I	Disas	ster;	
Natural and Man	made Disasters: Difference, Nature, Types and Magnitude.					
UNIT II REPERCUSSIONS OF DISASTERS AND HAZARDS			6			
Economic Dama	ge, Loss of Human and Animal Life, Destruction Of Ecosy	vster	n. N	atura	al	
Disasters: Earth	nquakes, Volcanisms, Cyclones, Tsunamis, Floods, D	rou	ghts	An	d	
Famines, Landsl	ides And Avalanches, Man-made disaster: Nuclear React	or N	Melto	dowi	n,	
Industrial Accide	ents, Oil Slicks And Spills, Outbreaks Of Disease And Ep	oide	mics	, Wa	ır	
And Conflicts.					1 -	
UNIT III	DISASTER PRONE AREAS IN INDIA				6	
Study of Seism	nic Zones; Areas Prone To Floods and Droughts, La	ndsl	ides	An	d	
Avalanches; Are	eas Prone To Cyclonic and Coastal Hazards with Special	Ref	eren	ce T	0	
Tsunami; Post-L	Disaster Diseases and Epidemics					
UNIT IV	DISASTER PREPAREDNESS AND MANAGEMENT				6	
Preparedness: M	lonitoring Of Phenomena Triggering a Disaster or Hazard	l; E	valu	atio	n of	
Risk: Applicatio	on of Remote Sensing, Data from Meteorological And	Othe	er A	genc	vies,	
Media Reports: (Governmental and Community Preparedness.			-		
UNIT V	RISK ASSESSMENT				6	
Disaster Risk: C	Concept and Elements, Disaster Risk Reduction, Global	and	l Na	tion	al	
Disaster Risk Si	tuation. Techniques of Risk Assessment, Global Co-Oper	ratic	on in	Ris	k	

Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

	IOTAL: 30 PERIODS
COURSE	OUTCOMES:
Upon con	pletion of the course, the students will/ will be able to
CO1:	Ability to summarize basics of disaster
CO 2.	Ability to explain a critical understanding of key concepts in disaster risk
CO2.	reduction and humanitarian response
CO3.	Ability to illustrate disaster risk reduction and humanitarian response policy and
005:	practice from multiple perspectives
CO4.	Ability to describe an understanding of standards of humanitarian response and
04:	practical relevance in specific types of disasters and conflict situations
CO5.	Ability to develop the strengths and weaknesses of disaster management
005	approaches
REFERE	NCES:
1	Goel S. L., Disaster Administration And Management Text And Case
1.	Studies", Deep& Deep Publication Pvt. Ltd., New Delhi, 2009.
2	NishithaRai, Singh AK, "Disaster Management in India: Perspectives, issues
Ζ.	and strategies" NewRoyal book Company, 2007.
2	Sahni, PardeepEt.Al, "Disaster Mitigation Experiences And Reflections",
3.	Prentice Hall OfIndia, New Delhi, 2001.

AX40	94	நற்றமிழ் இலக்கியம்	L	Т	Р	C
			2	0	0	0
UNIT	Ι	சங்க இலக்கியம்				6
	1. தமிழி	ன் துவக்க நூல் தொல்காப்பியம்				
	- ज (ழத்து, சொல், பொருள்				
	2. அகந	ானூறு (82)				
	- இ	பற்கை இன்னிசை அரங்கம்				
	3. குறிஞ்	சிப் பாட்டின் மலா்க்காட்சி				
	4. புறநா	னூறு (95,195)				
	-	போரை நிறுத்திய ஒளவையார்				
UNIT	II	அறநெறித் தமிழ்				6
1.	அறநெறி	வகுத்த திருவள்ளுவர்				
	- அறம்	வலியுறுத்தல், அன்புடமை, ஒப்பறவு அறிதல், ஈகை, புகழ்				
2.	பிற அறு	ரால்கள் - இலக்கிய மருந்து				
	- ஏலாதி	, சிறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (துாய்மையை எ	பலிப	புறுத்	தும்	
	நூல்)					
UNIT	III	இரட்டைக் காப்பியங்கள்				6
1.	கண்ணகி	பரட்சி				-
	- சிலப்ப	திகார வழக்குரை காதை				
2.	சமூக சே	வை இலக்கியம் மணிமேகலை				
	- சிறைச்	கோட்டம் அறக்கோட்டமாகிய காதை				
UNIT	IV	அருள்நெறித் தமிழ்				6
1.	சிறுபாணா	ற்றுப் படை				
	- பாரி	்ட் முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர்எ	വെ	கெ	ாடுத்	தது,
	அதிய		T.			0

2.	நற்	நிணை	
	-	அன்னைக்குரிய புன்னை சிறப்பு	
3.	திர	நமந்திரம் (617, 618)	
	-	இயமம் நியமம் விதிகள்	
4.	தர்	மச்சாலையை நிறுவிய வள்ளலார்	
5.	புற	நானுாறு	
		- சிறுவனே வள்ளலானான்	
6.	୬ଧ	ьநானுாறு (4)	
	நற்	றிணை (11) - நண்டு	
	கல	ித்தொகை (11) - யானை, புறா	
	æĿ	திணை 50 (27) - மான்	
		ஆகியவை பற்றிய செய்திகள்	
UNIT	V	நவீன தமிழ் இலக்கியம்	6
1.	2.6	ரைநடைத் தமிழ்	
	-	தமிழின் முதல் புதினம்	
	- தமிழின் முதல் சிறுகதை		
	-	கட்டுரை இலக்கியம்	
	-	பயண இலக்கியம்	
- நாடகம்			
2. நாட்டு விடுதலை போராட்டமும், தமிழ் இலக்கியமும்			
3. சமுதாய விடுதலையும், தமிழ் இலக்கியமும்			
4. பெண் விடுதலையும், விளிம்பு நிலையினரின் மேம்பாட்டில் தமிழ் இலக்கியமும்,			
5. அறிவியல் தமிழ்			
6. இணையத்தில் தமிழ்			
7. சுற்றுச்சூழல் மேம்பாட்டில் தமிழ் இலக்கியம்			
TOTAL: 30 PERIODS			
தமிழ் இலக்கிய வெளியீடுகள். புத்தகங்கள்			
1.		தமிழ் இணைய கல்விக்கழகம் (Tamil Virtual University) - www.tamilvu.org	
2.		தமிழ் விக்கிப்பீடியா (Tamil Wikipedia)- https://ta.wikipedia.org	
3.		தாமபுர ஆதீன வெளியீடு	
4.		வாழ்வியல் களஞ்சியம்- தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர்	
5.	,	தமிழ்கலைக் களஞ்சியம்- தமிழ் வளர்ச்சித் துறை (thamilvalarchithurai.com)	
6.		அறிவியல் களஞ்சியம்- தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர்	

HOD

DEAN ACADEMICS

PRINCIPAL