M.E. Degree

in

POWER ELECTRONICS AND DRIVES

CURRICULUM & SYLLABUS (CBCS)

(For students admitted from the Academic Year 2022-2023)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

St. XAVIER'S CATHOLIC COLLEGE OF ENGINEERING

CHUNKANKADAI, NAGERCOIL – 629 003.

KANYAKUMARI DISTRICT, TAMIL NADU, INDIA

St. XAVIER'S CATHOLIC COLLEGE OF ENGINEERING

Chunkankadai, Nagercoil - 629 003.

AUTONOMOUS COLLEGE AFFILIATED TO ANNA UNIVERSITY

ACADEMIC REGULATIONS 2022 M.E. POWER ELECTRONICS AND DRIVES CURRICULUM

CHOICE BASED CREDIT SYSTEM

Power Electronics and Drives is the most researched and futuristic course due to its wide variety of applications in the field of renewable energy, efficient power transmission and effective control of electrical drives. This curriculum aims to develop technically empowered professionals and researchers who can demonstrate a degree of mastery over the area.

I. PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

Ι	To design and test power electronic converters, drive systems and various controllers							
	using advanced tools.							
II	To analyse and design power electronic systems and special electrical machines for efficient extraction and utilization of various renewable energy sources							
III	To develop smart products using cutting edge technologies to needs the societal needs and environmental aspects.							
IV	To develop confidence and exhibit self-learning capability to demonstrate a pursuit in life-long learning through higher studies and research.							

II. PROGRAMME OUTCOMES (POs)

PO#	Programme Outcomes
1	An ability to independently carry out research/investigation and development work to solve
	practical problems
2	An ability to write and present a substantial technical report/document.
3	Students should be able to demonstrate a degree of mastery over the area as per the
	specialization of the program. The mastery should be at a level higher than the requirements
	in the appropriate bachelor program.
4	Apply the knowledge of basic science and engineering to control and test the power
	electronic systems and drives.
5	Analyse power electronics and drives related engineering problems and find innovative
	solutions to meet the requirement of social needs and environmental factors.
6	Design cost effective products using cutting edge technologies in power electronics and
	drives systems.

PEO's – PO's MAPPING:

PROGRAMME EDUCATIONAL	PROGRAMME OUTCOMES							
OBJECTIVES	1	2	3	4	5	6		
Ι	2	2	2	3	1	2		
II	2	2	2	3	2	2		
III	3	1	2	2	3	3		
IV	3	3	2	2	2	1		

PROGRAMME ARTICULATION MATRIX

Year	Semester	Course code	PO1	PO2	PO3	PO4	PO5	PO6
	Ι	MA22106	2	-	-	2	1	-
		PE22102	1	-	1	3	2	1
		RM22101	3	2	3	-	-	2
		PE22101	2	-	2.75	2.6	2.6	2.5
		PE22103	2	2.2	2.2	1.4	1.6	2
T		PE22104	3	3	3	-	-	-
1	II	PE22201	1	1	1	3	2	1
		PE22203	1	3	2	2	1	1
		PE22204	1.6	-	3	2	1.33	2
		PE22202	2.4	3	2	3	1.4	1.33
		PE22205	1	2	3	1	1	1.2
		RM22201	2	2	-	-	2	2

SEMESTER I

SL.	COURSE CODE	COURSE TITLE	CATE -	PERIODS PER WEEK			TOTAL CONT ACT	CREDITS
NO.			GORY	L	Т	Р	PERIO DS	
THE	ORY							
1	MA22106	Advanced Mathematics for Power Electronics Engineers	FC	3	1	0	4	4
2	PE22102	Modelling and Design of	PCC	3	1	0	4	4

		SMPS								
3		Professional Elective I	PEC	3	0	0	3	3		
4	RM22101	Research Methodology	RMC	2	0	0	2	2		
THEORY COURSES WITH PRACTICAL COMPONENT										
5	PE22101	Analysis of Power Converters	PCC	3	0	2	5	4		
PRA	ACTICAL		1		I		l	I		
6	PE22103	Design Laboratory for Power Electronics and Drives	PCC	0	0	4	4	2		
EM	PLOYABILIT	Y ENHANCEMENT COURS	ES	1		1				
7	PE22104	Technical Seminar	EEC	0	0	2	2	1		
MA	NDATORY C	OURSES	I			I				
8		Audit Course I	AC	2	0	0	2	0		
TO	ГАL	16	2	8	26	20				

SEMESTER II

SL. NO	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS			
			GOKI	L	T	Р	PERIODS				
THE	THEORY										
1	PE22201	Analysis of Electrical Machines	PCC	3	1	0	4	4			
2	PE22203	System Design Using Microcontroller	PCC	3	0	0	3	3			
3	PE22204	Electric Vehicles and Power management	PCC	3	0	0	3	3			
4		Professional Elective II	PEC	3	0	0	3	3			
5		Professional Elective III	PEC	3	0	0	3	3			

TH	THEORY COURSES WITH PRACTICAL COMPONENT										
6	PE22202	Analysis of Electrical Drives	PCC	3	0	2	5	4			
PRACTICAL											
7	PE22205	Analog and Digital Controllers for PE Converters Laboratory	PCC	0	0	4	4	2			
EMI	PLOYABILIT	Y ENHANCEMENT COURS	SES								
8	RM22201	Research Tool Laboratory	EEC	0	0	4	4	2			
MAN	NDATORY C	OURSES									
9		Audit Course II	AC	2	0	0	2	0			
TOTAL			20	1	14	34	24				

SEMESTER III

SL. NO	COURSE CODE	COURSE TITLE	CATE -	PERI WEEI	ODS PI K	ER	TOTAL CONTACT	CREDITS
•			GORY	L	Т	Р	PERIODS	
THE	ORY							
1		Professional Elective IV	PEC	3	0	0	3	3
2		Professional Elective V	PEC	3	0	0	3	3
3		Open Elective	OEC	3	0	0	3	3
EMF	PLOYABILIT	Y ENHANCEMENT COURS	ES					
4	PE22301	Inplant / Industrial / Practical Training (4 weeks during summer vacation)	EEC	-	-	-	-	2
5	PE22302	Project Work I	EEC	0	0	6	6	3
тот	TOTAL				0	6	15	14

SEMESTER IV

SL. COURSE NO. CODE		COURSE TITLE	CATE -	PERIODS PER WEEK			TOTAL CONTACT	CREDITS		
1.0.			GORY	L	Т	Р	PERIODS			
EMPI	EMPLOYABILITY ENHANCEMENT COURSES									
1	PE22401	Project Work II	EEC	0	0	24	24	12		
TOTAL				0	0	24	24	12		

(Total Credit Range = 70 - 75)

Name of the Programme:Power Electronics and Drives										
S.No	Subject Area	Credits	Total Credits							
		Ι	II	III	IV					
1	FC	4	-	-		4				
2	PCC	10	16	-		26				
3	PEC	3	6	6		15				
4	OEC	-	-	3		3				
5	EEC	1	2	5	12	20				
6	RMC	2	-	-	-	2				
7	Non-Credit AC	0	0	-	-	0				
Total		20	24	14	12	70				

PROFESSIONAL ELECTIVE I – SEMESTER I

SL.	COURSE CODE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.			GORY	L	Т	Р	PERIODS	
1	PE22111	Power Semiconductor Devices	PEC	3	0	0	3	3
2	PE22112	Special Electrical Machines	PEC	3	0	0	3	3
3	PE22113	Soft Computing Techniques	PEC	3	0	0	3	3
4	PE22114	System Theory	PEC	3	0	0	3	3

PROFESSIONAL ELECTIVES II- SEMESTER II

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK			TOTAL CONTACT PERIODS	CREDITS	
				L	Τ	Р		CREDITS 3 3 3 3	
1	PE22221	Power Electronics for Renewable Energy Systems	PEC	3	0	0	3	3	
2	PE22222	PWM Rectifiers and Resonant Converters	PEC	3	0	0	3	3	
3	PE22223	Voltage Lift Converters	PEC	3	0	0	3	3	
4	PE22224	Control of Power Electronic Circuits	PEC	3	0	0	3	3	

PROFESSIONAL ELECTIVES III – SEMESTER II

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PEF	WEEK		TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р		
	PE22231	Power Quality	PEC	3	0	0	3	3
	PE22232	Machine Learning and Deep Learning	PEC	3	0	0	3	3
	PE22233	IoT for Smart Systems	PEC	3	0	0	3	3
	PE22234	MEMS Design of Sensors and Actuators	PEC	3	0	0	3	3

PROFESSIONAL ELECTIVES IV- SEMESTER III

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PE	PERIODS PER WEEK		TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р		
1	PE22341	Renewable Energy Technology	PEC	3	0	0	3	3
2	PE22342	Wind Energy Conversion Technology	PEC	3	0	0	3	3
3	PE22343	Energy Management and Auditing	PEC	3	0	0	3	3
4	PE22344	HVDC and FACTS	PEC	3	0	0	3	3

PROFESSIONAL ELECTIVES V – SEMESTER III

SL. NO.	COURSE CODE	COURSE TITLE	CATE GOR Y	PE	RIO R EEK		TOTAL CONTACT PERIODS	CREDITS
				L	T	Р		
1	PE22351	Energy Storage Technologies	PEC	3	0	0	3	3
2	PE22352	Battery management System	PEC	3	0	0	3	3
3	PE22353	Python programming for machine learning	PEC	3	0	0	3	3
4	PE22354	Smart Grid	PEC	3	0	0	3	3

AUDIT COURSES (AC)

SL.	COURSE CODE	COURSE TITLE	CATE		RIOD R WE		TOTAL CONTACT	CREDITS
NO.			GORY	L	T	Р	PERIODS	
1	AC22101	English for Research Paper Writing	AC	2	0	0	2	0
2	AC22102	Constitution of India	AC	2	0	0	2	0
3	AC22201	Disaster Management	AC	2	0	0	2	0
4	AC22202	நற்றமிழ் இலக்கியம்	AC	2	0	0	2	0

	ADVANCED MATHEMATICS FOR POWER ELECTRONICS	L	т	Р	С	
MA22106	ENGINEERS	Ľ	-	•		

		3	1	0	4		
COURSE O	BJECTIVES:						
• To introduce the basic concepts of matrices, calculus, transforms and probability.							
	iliarize the students in the field of differential equations to solve boundar ted with engineering applications	y val	lue p	orobl	ems		
	oduce the effective mathematical tools for the solutions of partial different several physical processes and to develop Z transform techniques for discre		-				
	elop the ability among the students to solve problems using Fourier serie ering applications	s ass	ocia	ted v	with		
• To understand the basic concepts of probability and to introduce some standard distributions applicable to engineering which can describe real life phenomenon							
UNIT I	MATRIX THEORY				12		
The Cholesk	y decomposition – Generalized Eigenvectors – Gram Schmidt orthogonal tion –Singular value decomposition – Pseudo inverses – Least square appro		-		<u>ss</u> –		
UNIT II	CALCULUS OF VARIATIONS				12		
Concept of variations and its properties – Euler's theorem – Functional dependent on first and higher order of derivatives – Functional dependent on functions of several independent variables – Isoperimetric problems – Rayleigh Ritz method.							
UNIT III	LAPLACE TRANSFORM TECHNIQUES FOR PARTIAL DIFFERI EQUATIONS	ENT	IAL		12		
function – Co	Properties – Transform error function – Bessel's function – Dirac Delta fur onvolution theorem – Inverse Laplace transform – Complex inversion form ential equations: Heat and Wave equations				-		
UNIT IV	FOURIER TRANSFORM TECHNIQUES FOR PARTIAL DIFFERE	ENTI	[AL		12		
Convolution	forms: Definitions, properties – Transform of elementary functions, Dirac theorem, Parseval's identity – Solutions to partial differential equation ons, Laplace and Poisson's equations						
UNIT V	PROBABILITY AND RANDOM VARIABLES				12		
mass function	Axioms of probability – Conditional probability – Discrete random variabl – Continuous random variable – Probability density function – Properties tributions: Binomial, Poisson and Normal distributions (Derivations not inc	Me	ean, v		•		
	ΤΟΤΑ	L: 6	0 PF	CRIC	DS		
COURSE O	UTCOMES:						
At the end o	f the course, the students will be able to:						
CO2: Ex	xplain the decomposition techniques and the boundary value problems						

CO3	: Demonstrate Laplace transform, Fourier transform and probability in electrical field								
CO4	: Develop matrix theory and boundary value problems in electrical engineering								
CO5	Solve partial differential equations using transforms technique and distributions in								
	engineering applications								
REFE	RENCES:								
1.	Richard Bronson, "Matrix Operation", Schaum's outline series, Second Edition, McGraw Hill,								
	New Delhi, 2011.								
2.	Elsgolc L.D., "Calculus of Variations", Dover Publications Inc., New York, 2007.								
3.	Kreyszig E, "Advanced Engineering Mathematics", 10 th Edition, John Wiley, New Delhi,								
	India, 2018.								
4.	Sankara Rao K, "Introduction to Partial Differential Equations", Prentice Hall of India Pvt. Ltd,								
	New Delhi, 2013.								
5.	Miller S.L. and Childers D.G., "Probability and Random Processes with Applications to Signal								
	Processing and Communications", Academic Press, 2012.								

Course		Program Outcomes							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	-	2	1	-			
CO2	2	-	-	2	1	-			
CO3	2	-	-	2	1	-			
CO4	2	-	-	2	1	-			
CO5	2	-	-	2	1	-			
СО	2	-	-	2	1	-			

Table of Specifications for End Semester Question Paper

MA22106 ADVANCED MATHEMATICS FOR POWER ELECTRONICS ENGINEERS

Unit No. and T	itle	Total 2 Marks	Total 16 Marks Qns.		Cognitiv	e Level	
		Qns.	Marks Qus.	Remem ber (Kn)	Understan d (Un)	Apply (Ap)	Analy se (An)
Unit-I:Matrix The	eory	2	1 either or	1(2)- CO1	1(2)-CO2	1either or (16)-CO4	-
Unit-II: Calculu Variations	s of	2	1 either or	1(2)- CO1	1(2)-CO2	1either or (16)-CO4	-
Unit-III: La Transform Techr for Partial Differ Equations	-	2	1 either or	1(2)- CO1	1(2)-CO3	1either or (16)-CO5	-
Unit-IV: Fo Transform Techr for Partial Differ Equations	-	2	1 either or	1(2)- CO1	1(2)-CO3	1either or (16)-CO5	-
Unit-V: Proba	ıbility ndom	2	1 either or	1(2)- CO1	1(2)-CO3	1either or (16)-CO5	-
Total Qns.		10	5 either or	5(2)	5(2)	5 either or (16)	-
Total Marks		20	80	10	10	80	-
Weightage		20%	80%	10%	10%	80%	_
			Weightage fo	or Cos		1	1
	CO1	CO2	CO3	CO4		CO5	
Total Marks	10	4	6	32		48	
Weightage	10%	4%	6%	32%		48%	

	MODELLING AND DESIGN OF SMPS	L	Т	Р	С			
		3	1	0	4			
COURSE	OBJECTIVES:							
• To in	culcate knowledge on steady state analysis of Non-Isolated DC-DC converter							
• To p	rform steady state analysis of Isolated DC-DC converter							
• To e	ucate on different converter dynamics							
• To ir	part knowledge on the design of controllers for DC-DC converters							
• To fa	miliarize the design magnetics for SMPS applications							
UNIT I	ANALYSIS OF NON-ISOLATED DC-DC CONVERTERS				12			
Buck, Boo	t, Buck- Boost and Cuk converters: Principles of operation – Continuous cond	ucti	on n	node				
-	f volt-sec balance and charge balance – Analysis and design based on steadyst on to discontinuous conduction .	ate r	elati	onsł	iips			
UNIT II	ANALYSIS OF ISOLATED DC-DC CONVERTERS				12			
Introductic SMPS – A	n – classification- forward- flyback- pushpull – half bridge – full bridge topo pplications	logi	es d	esigi	ı of			
UNIT III	CONVERTER DYNAMICS							
AC equiv	lent circuit analysis – State space averaging – Circuit averaging – A	vera	ged	SW	itch			
12nalyse12	12 - Transfer function model for buck, boost, buck-boost and cuk converters -	- Inp	ut fi	lters				
UNIT IV	CONTROLLER DESIGN							
Review of	P, PI, and PID control concepts – gain margin and phase margin – Bode plot	base	d an	alys	is –			
Design of	ontroller for buck, boost, buck-boost and cuk converters			-				
	DESIGN OF MAGNETICS							
UNIT V								
Basic mag for isolated	etic theory revision – Inductor design – Design of mutual inductance – Design topologies – Ferrite core table and selection of area product – wire table – sele							
Basic mag for isolated		ectio	n of	wire	e			
Basic mag for isolatec gauge	topologies – Ferrite core table and selection of area product – wire table – sele	ectio	n of	wire	e			
Basic mag for isolated gauge COURSE	topologies – Ferrite core table and selection of area product – wire table – sele TOTAI	ectio	n of	wire	e			
Basic mag for isolated gauge COURSE	topologies – Ferrite core table and selection of area product – wire table – sele TOTAI	ectio	n of	wire	e			
Basic mag for isolatec gauge COURSE At the end	topologies – Ferrite core table and selection of area product – wire table – sele TOTAI OUTCOMES: of the course, the students will be able to:	ectio	n of	wire	e			
Basic mag for isolated gauge COURSE At the end CO1:	topologies – Ferrite core table and selection of area product – wire table – sele TOTAI OUTCOMES: of the course, the students will be able to: Analyze Non-Isolated DC-DC converter	ectio	n of	wire	e			
Basic mag for isolated gauge COURSE At the end CO1: CO2:	topologies – Ferrite core table and selection of area product – wire table – sele TOTAI OUTCOMES: of the course, the students will be able to: Analyze Non-Isolated DC-DC converter Analyze Isolated DC-DC converter	ectio	n of	wire	e			
Basic mag for isolated gauge COURSE At the end CO1: CO2: CO3:	topologies – Ferrite core table and selection of area product – wire table – sele TOTAI OUTCOMES: of the course, the students will be able to: Analyze Non-Isolated DC-DC converter Analyze Isolated DC-DC converter Derive the transfer function of DC-DC converters	ectio	n of	wire	e			
Basic mag for isolated gauge COURSE At the end CO1: CO2: CO3: CO3: CO4: CO5:	topologies – Ferrite core table and selection of area product – wire table – sele TOTAI OUTCOMES: of the course, the students will be able to: Analyze Non-Isolated DC-DC converter Analyze Isolated DC-DC converter Derive the transfer function of DC-DC converters Explain the design concepts for DC-DC converters Explain the magnetic concepts for the design of Inductors	ectio	n of	wire	e			
Basic mag for isolated gauge COURSE At the end CO1: CO2: CO3: CO3: CO4: CO5: REFEREI	topologies – Ferrite core table and selection of area product – wire table – sele TOTAI OUTCOMES: of the course, the students will be able to: Analyze Non-Isolated DC-DC converter Analyze Isolated DC-DC converter Derive the transfer function of DC-DC converters Explain the design concepts for DC-DC converters Explain the magnetic concepts for the design of Inductors ICES:	.: 60	n of) PE					
Basic mag for isolated gauge COURSE At the end CO1: CO2: CO3: CO3: CO4: CO5: REFERENT 1 J	topologies – Ferrite core table and selection of area product – wire table – sele TOTAI OUTCOMES: of the course, the students will be able to: Analyze Non-Isolated DC-DC converter Analyze Isolated DC-DC converter Derive the transfer function of DC-DC converters Explain the design concepts for DC-DC converters Explain the magnetic concepts for the design of Inductors	.: 60	n of) PE					

	Edition, 2020
3	2. Simon Ang and Alejandra Oliva, "Power-Switching Converters", CRC press, 3 rd edition,
	2011.
4	3. Philip T Krein, "Elements of Power Electronics", Oxford University Press, 2017.
5	4. Ned Mohan, "Power Electronics: A first course", Wiley,2011, 1 st edition.
6	5. IssaBatarseh, Ahmad Harb, "Power Electronics- Circuit Analysis and Design, Second edition,
	2018
7	6. V.Ramanarayanan, "Course material on Switched mode power conversion", 2007
8	7. Alex Van den Bossche and VencislavCekovValchev, "Inductors and Transformers for Power
	Electronics", CRC Press, 1 st edition, 2005.
9	8. W. G. Hurley and W. H.Wolfle, "Transformers and Inductors for Power Electronics Theory,
	Design and Applications", 2013 Wiley, 1 st Edition.

Course	Program Outcomes									
outcome	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	1	3	2	1				
CO2	1	-	1	3	2	1				
CO3	1	-	1	3	2	1				
CO4	1	-	1	3	2	1				
CO5	1	-	1	3	2	1				
СО	1	-	1	3	2	1				

Table of Specification for End Semester Question Paper

				Cognitive	e Level	
Unit No. and Title	Total 2 Marks	Total 16 Marks	Remember (Kn)	Understand (Un)	Apply (Ay)	Analyse(An)
	Iviai K5			No. of Qns. (mark		
Unit-I: Analysis Of Non-Isolated DC-DC Converters	2	1 either or	2(2) – CO1	-	-	1 either or (16) – CO1
Unit-II: Analysis of Isolated Dc-Do Converters		1 either or	2(2) – CO2	-	-	1 either or (16) – CO2
Unit-III: Converter Dynamics	2	1 either or	2(2) — CO3	-	-	1 either or (16) – CO3
Unit-IV: Controller Design	2	1 either or	2(2) – CO4	1 either or (16) – CO4		-
Unit-V: Design of Magnetics	2	1 either or	2(2) – CO5	1 either or (16) – CO5	-	-
Total Qns.	10	5 either or	10(2)	2(2) 2 either or (16)	-	3(2) 3either or (16)
Total Marks	20	80	20	32	-	48
Weightage	20 %	80%	20%	32%	-	48%
		W	veightage for (Cos	1	
	CO1	CO2	CO3	CO4		CO5
Total Marks	20	20	20	20		20
Weightage	20%	20%	20%	20%		20%

PE22102 – MODELING AND DESIGN OF SMPS

RM2210)1	RESEARCH METHODOLOGY	L	Т	Р	С
			2	0	0	2
COURS	E O	BJECTIVES:				
	-	e an overview of the research methodology and IPR, and expla llection and analysis.	ain th	e tecł	nnique	es of
UNIT I		RESEARCH DESIGN				6
		research process and design, Use of Secondary and explorator stion, Qualitative research, Observation studies, Experiments and	-		inswei	r the
UNIT II	[DATA COLLECTION AND SOURCES				6
		ts, Measurement Scales, Questionnaires and Instruments, Sam ring, Exploring, examining and displaying	npling	g and	meth	ods.
UNIT II		DATA ANALYSIS AND REPORTING				6
		Multivariate analysis, Hypotheses testing and Measures of Ass findings using written reports and oral presentation	sociat	tion.	Preser	nting
developm	ual F nent	INTELLECTUAL PROPERTY RIGHTS Property – The concept of IPR, Evolution and development of process, Trade secrets, utility Models, IPR & Bio diversity, Role	e of W	VIPO	and V	VTO
Intellectu developm in IPR es IPR Agre	ual F nent stabl eeme	Property – The concept of IPR, Evolution and development of process, Trade secrets, utility Models, IPR & Bio diversity, Role lishments, Right of Property, Common rules of IPR practices, Trademark, Functions of UNESCO in IPR maintenance	e of W	VIPO	and V	IPR VTO es of
Intellectu developm in IPR es IPR Agre UNIT V	ual F nent stabl eeme	Property – The concept of IPR, Evolution and development of process, Trade secrets, utility Models, IPR & Bio diversity, Role lishments, Right of Property, Common rules of IPR practices, Trademark, Functions of UNESCO in IPR maintenance PATENTS	e of W ypes	/IPO and F	and V eature	IPR VTO es of 6
Intellectu developm in IPR es IPR Agree UNIT V Patents Specifica patent, R	ual F nent stabl eeme – o ation	Property – The concept of IPR, Evolution and development of process, Trade secrets, utility Models, IPR & Bio diversity, Role lishments, Right of Property, Common rules of IPR practices, Trademark, Functions of UNESCO in IPR maintenance	e of W ypes ent, of p	VIPO and F	and V eature tive Grar	IPR VTO es of 6 step, nt of
Intellectu developm in IPR es IPR Agree UNIT V Patents Specifica patent, R	ual F nent stabl eeme – o ation	Property – The concept of IPR, Evolution and development of process, Trade secrets, utility Models, IPR & Bio diversity, Role lishments, Right of Property, Common rules of IPR practices, Teent, Trademark, Functions of UNESCO in IPR maintenance PATENTS bjectives and benefits of patent, Concept, features of patent, Types of patent application, process E-filling, Examination cation, Equitable Assignments, Licences, Licensing of related patent agents	e of W ypes ent, of p atents	VIPO and F Inven atent, a, pate	and V eature tive Grar	IPR VTO es of 6 step, nt of ents,
Intellectu developm in IPR es IPR Agre UNIT V Patents Specifica patent, R Registrat	ual F ment stabl eeme – o ation Revoo	Property – The concept of IPR, Evolution and development of process, Trade secrets, utility Models, IPR & Bio diversity, Role lishments, Right of Property, Common rules of IPR practices, Teent, Trademark, Functions of UNESCO in IPR maintenance PATENTS bjectives and benefits of patent, Concept, features of patent, Types of patent application, process E-filling, Examination cation, Equitable Assignments, Licences, Licensing of related patent agents	e of W ypes ent, of p atents	VIPO and F Inven atent, a, pate	and V Teature tive Grar ent ag	IPR VTO es of 6 step, nt of ents,
Intellectu developm in IPR es IPR Agre UNIT V Patents Specifica patent, R Registrat	ual F nent stabl eeme – o ation &evo tion o	Property – The concept of IPR, Evolution and development of process, Trade secrets, utility Models, IPR & Bio diversity, Role lishments, Right of Property, Common rules of IPR practices, Trademark, Functions of UNESCO in IPR maintenance PATENTS bjectives and benefits of patent, Concept, features of patent, Types of patent application, process E-filling, Examination cation, Equitable Assignments, Licences, Licensing of related patent agents TO UTCOMES: f the course, the students will be able to:	e of W ypes ent, of p atents	VIPO and F Inven atent, a, pate	and V Teature tive Grar ent ag	IPR VTO es of 6 step, nt of ents,
Intellectu developm in IPR es IPR Agre UNIT V Patents Specifica patent, R Registrat	ual F nent stabl eeme – o ation &evo tion o	Property – The concept of IPR, Evolution and development of process, Trade secrets, utility Models, IPR & Bio diversity, Role lishments, Right of Property, Common rules of IPR practices, Trademark, Functions of UNESCO in IPR maintenance PATENTS bjectives and benefits of patent, Concept, features of patent, Types of patent application, process E-filling, Examination cation, Equitable Assignments, Licences, Licensing of related patent agents TO UTCOMES:	e of W ypes ent, of p atents	VIPO and F Inven atent, a, pate	and V Teature tive Grar ent ag	IPR VTO es of 6 step, nt of ents,
Intellectu developm in IPR es IPR Agre UNIT V Patents Specifica patent, R Registrat COURS At the en	ual F nent stabl eeme – o ation ation tion o E O nd o	Property – The concept of IPR, Evolution and development of process, Trade secrets, utility Models, IPR & Bio diversity, Role lishments, Right of Property, Common rules of IPR practices, Trademark, Functions of UNESCO in IPR maintenance PATENTS bjectives and benefits of patent, Concept, features of patent, Types of patent application, process E-filling, Examination cation, Equitable Assignments, Licences, Licensing of related patent agents TO UTCOMES: f the course, the students will be able to:	e of W ypes ent, of p atents VTAL	VIPO and F Inven atent, a, pate	and V Teature tive Grar ent ag	IPR VTO es of 6 step, nt of ents,
Intellectu developm in IPR es IPR Agre UNIT V Patents Specifica patent, R Registrat COURS At the en CO1: CO2: CO3:	ual F ment stabl eeme ation ation tion of E O nd o Exp Pre	Property – The concept of IPR, Evolution and development of process, Trade secrets, utility Models, IPR & Bio diversity, Role lishments, Right of Property, Common rules of IPR practices, Trent, Trademark, Functions of UNESCO in IPR maintenance PATENTS bjectives and benefits of patent, Concept, features of patent, Types of patent application, process E-filling, Examination cation, Equitable Assignments, Licences, Licensing of related patent agents TO UTCOMES: f the course, the students will be able to: tline the methodology of research. plain the research problem, data collection methods, IPR and pate	e of W ypes ent, of p atents DTAL ent.	VIPO and F Inven atent, , pate : 30 I	and V eature tive Grar ent ag PERIC	IPR VTO es of 6 step, nt of ents, DDS
Intellectu developm in IPR es IPR Agre UNIT V Patents Specifica patent, R Registrat COURS At the en CO1: CO2: CO3: CO3:	ual F nent stabl eeme – o ation ation tion of E O nd o Exp Pre De	Property – The concept of IPR, Evolution and development of process, Trade secrets, utility Models, IPR & Bio diversity, Role lishments, Right of Property, Common rules of IPR practices, Treent, Trademark, Functions of UNESCO in IPR maintenance PATENTS bijectives and benefits of patent, Concept, features of patent, Types of patent application, process E-filling, Examination cation, Equitable Assignments, Licences, Licensing of related patent agents TO UTCOMES: f the course, the students will be able to: tline the methodology of research. plain the research problem, data collection methods, IPR and pater pare a well-structured research paper, scientific presentations and velop awareness on IPR, patent law and procedural mechanism in	e of W ypes ent, of p atents DTAL ent.	VIPO and F Inven atent, , pate : 30 I	and V eature tive Grar ent ag PERIC	IPR VTO es of 6 step, nt of ents, DDS
Intellectu developm in IPR es IPR Agre UNIT V Patents Specifica patent, R Registrat COURS At the en CO1: CO2: CO3:	ual F nent stabl eeme – o ation ation tion of E O nd o Exp Pre De	Property – The concept of IPR, Evolution and development of process, Trade secrets, utility Models, IPR & Bio diversity, Role lishments, Right of Property, Common rules of IPR practices, Trent, Trademark, Functions of UNESCO in IPR maintenance PATENTS bjectives and benefits of patent, Concept, features of patent, Types of patent application, process E-filling, Examination cation, Equitable Assignments, Licences, Licensing of related patent agents TO UTCOMES: f the course, the students will be able to: tline the methodology of research. plain the research problem, data collection methods, IPR and pate	e of W ypes ent, of p atents DTAL ent.	VIPO and F Inven atent, , pate : 30 I	and V eature tive Grar ent ag PERIC	IPR VTO es of 6 step, nt of ents, DDS
Intellectu developm in IPR es IPR Agre UNIT V Patents Specifica patent, R Registrat COURS At the en CO1: CO2: CO3: CO3:	ual F nent stabl eeme – o ation ation tion of EE O nd of Exp Pre Dev Ant	Property – The concept of IPR, Evolution and development of process, Trade secrets, utility Models, IPR & Bio diversity, Role lishments, Right of Property, Common rules of IPR practices, Tgent, Trademark, Functions of UNESCO in IPR maintenance PATENTS bjectives and benefits of patent, Concept, features of patent, Types of patent application, process E-filling, Examination cation, Equitable Assignments, Licences, Licensing of related patent agents TO UTCOMES: f the course, the students will be able to: tline the methodology of research. plain the research problem, data collection methods, IPR and pate expanse on IPR, patent law and procedural mechanism in alyse the data using appropriate tool.	e of W ypes ent, of p atents DTAL ent.	VIPO and F Inven atent, , pate : 30 I	and V eature tive Grar ent ag PERIC	IPR VTO es of 6 step, nt of ents, DDS

	Tata McGraw Hill Education, 11e (2012).
2	Kothari C R, Gaurav Garg, "Research Methodology- Methods and Techniques" New Age
	International Publishers, 2019.
3	Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade
	Secrets", Entrepreneur Press, 2007.
4	David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques",
	Wiley, 2007.
5	The Institute of Company Secretaries of India, Statutory body under an Act of
	parliament, "Professional Programme Intellectual Property Rights, Law and practice",
	September 2013.

Course	Program Outcomes									
outcome	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	3	-	-	-				
CO2	3	-	3	-	-	-				
CO3	3	2	3	-	-	-				
CO4	3	-	3	-	-	-				
CO5	3	-	3	-	-	2				
СО	3	2	3	-	-	2				

Table of specification for end semester question paper

		T-4-10	T-4-11(Cognitiv	ve Leve	l		
Unit No. and Title		Total 2 Marks Qns.	Total 16 Marks Qns.	Remember (Kn)	Ur	nderstan d (Un)	Apj (A)		Analyse (An)	
				N		f Qns. (ma	rks) ar	nd CÓ)	
unit-I: Resea Design	arch	2	1 either or	2(2) – CO1		either or 6) – CO1	-		-	
unit-II: Data Collection an Sources		2	1 either or	2(2) – CO2			1 eit (16)—	her or - CO2	-	
unit-III: Da Analysis and Reporting		2	1 either or	1(2) — CO3	1(2) — CO3			1 either or $(16) - CO3$	
unit-IV: Int Property Rig		2	1 either or	2(2) – CO4			1 eit or (16) —		-	
Unit-V: Pater	nts	2	1 either or	1(2) – CO5		2) — CO5 either or 6) — CO5	-	-		
Total Qns.		10	5 either or	8(2)	2 €	2(2) either or (16)	2 either or (16)		-	
Total Marks		20	80	16		36	32	2	16	
Weightage		20%	80%	16%		36%	329	%	16%	
				ge for Cos			·			
	CC	01	CO2	CO3		CO	04 CO5		CO5	
Total Marks	20		20	20		20			20	
Weightage	20	%	20%	20%		20%		20%		

RM22101 RESEARCH METHODOLOGY

PE22101	ANALYSIS OF POWER CONVERTERS	L	Т	Р	С				
		3	0	2	4				
COURSE OB	JECTIVES:								
To prov	• To provide the mathematical fundamentals necessary for deep understanding of power converter								
operating	g modes								
To intro	duce the electrical circuit concepts behind the different working modes of p	owe	r co	nver	ters				
so as to e	enable deep understanding of their operation								
To impa	• To impart required skills to formulate and design inverters for generic load and for machine loads								

• To equip with required skills to derive the criteria for the design of power converters starting fro	m
basic fundamentals	111
• To inculcate knowledge to perform analysis and comprehend the various operating modes different configurations of power converters	of
UNIT I SINGLE PHASE AC-DC CONVERTER	9
Half controlled and fully controlled converters with R-L, R-L-E loads and freewheeling diodes continuous and discontinuous modes of operation – inverter operation and its limit –performance parameters – effect of source impedance and overlap	
UNIT II THREE PHASE AC-DC CONVERTER	9
Half controlled and fully controlled converters with R, R-L, R-L-E loads and freewheeling diodes inverter operation and its limit – performance parameters – effect of source impedance and overlap.	_
UNIT III SINGLE PHASE INVERTERS	9
Principle of operation of half and full bridge inverters – Performance parameters – Voltage control single phase inverters– various harmonic elimination techniques.	of
UNIT IV THREE PHASE INVERTERS	9
180 degree and 120 degree conduction mode inverters with star and delta connected loads – voltage	ge
control of three phase inverters: single, multi pulse, sinusoidal, space vector modulation techniques	
UNIT V MULTILEVEL AND IMPEDANCE SOURCE INVERTERS	9
Multilevel concept - diode clamped - flying capacitor - cascaded type multilevel inverters - Compariso	on
of multilevel inverters – application of multilevel inverters – PWM techniques for MLI – Single phase	
&Three phase Impedance source inverters	
LIST OF EXPERIMENTS:	
 Circuit Simulation of Three-phase semi-converter with R, RL& RLE load. Circuit Simulation of Three-phase fully controlled converter with R, RL & RLE load. Circuit Simulation of Three-phase Voltage Source Inverter in 180 and 120 degree mode conduction. Simulation of a five-level cascaded multilevel inverter with R load. Circuit simulation of Three-phase PWM inverter. 	of
TOTAL: (45+30)=75 PERIOD	DS
COURSE OUTCOMES:	
At the end of the course, the students will be able to:	
CO1: Analyse various single phase controlled rectifiers for generic load and for machine load.	
CO2: Analyse and simulate three phase controlled rectifiers under different load conditions.	
CO3: Analyse the performance of single phase inverters.	
CO4: Explain and simulate various control techniques for three phase inverters.	
CO5: Describe multilevel inverters and Impedance Source inverters.	
REFERENCES:	
1. P.S.Bimbra, "Power Electronics", Khanna Publishers, Eleventh Edition, 2003	

2.	Rashid M.H., "Power Electronics Circuits, Devices and Applications ", Pearson, fourth Edition,
	10 th Impression 2021.
3.	Jai P. Agrawal, "Power Electronics System Theory and Design", Pearson Education, First
	Edition, 2015
4.	Bimal.K.Bose "Modern Power Electronics and AC Drives", Pearson Education, Second
	Edition, 2003
5.	Ned Mohan, T.M.Undeland and W.P.Robbins, "Power Electronics: converters, Application and
	design", 3 rd edition Wiley, 2007.
6.	Philip T. Krein, "Elements of Power Electronics" Indian edition Oxford University Press-2017
7.	P.C.Sen, "Modern Power Electronics", S.Chand Publishing 2005.
8.	Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", Wiley, 2 nd Edition, 2017

Course	Program Outcomes									
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	-	1	1	-				
CO2	1	-	2	3	3	-				
CO3	2	-	3	3	3	-				
CO4	3	-	3	3	3	2				
CO5	3	-	3	3	3	3				
СО	2	-	2.75	2.6	2.6	2.5				

Table of Specification for End Semester Question Paper

				Cognitive L	evel	
	Total 2	Total	Remember	Understand	Apply	Analyse(An)
UnitNo.andTitle	Marks	16Mark	(Kn) (Un)		(Ay)	
		S	N	lo.ofQns.(marks) a	ndCO	
Unit-I: Single Phase AC-DC Converter	2	1 either or	1(2) – CO1	1(2) — CO1 1 either or(16) – CO1	-	-
Unit-II: Three Phase AC-DC Converter	2	1 either or	1(2) – CO2	1(2) — CO2	1 either or(16) – CO2	-
Unit-III: Single Phase Inverters	2	1 either or	2(2) — CO3	-	1 either or(16) – CO3	-
Unit-IV: Three Phase Inverters	2	1 either or	2(2) – CO4	1 either or(16) – CO4	-	-
Unit-V: Multilevel and Impedance Source Inverters	2	1 either or	2(2) – CO5	1 either or(16) – CO5	-	-
Total Qns.	10	5 either or	8(2)	2(2) 2 either or (16)	3 either or (16)	-
Total Marks	20	80	16	52	32	-
Weightage	20 %	80%	16%	52%	32%	-
			Weightagefor C	05		
	CO1	CO2	CO3	CO4	С	05
TotalMarks	20	20	20	20		20
Weightage	20%	20%	20%	20%	2	0%

PE22101-ANALYSIS OF POWER CONVERTERS

PE22103	DESIGN LABORATORY FOR POWER ELECTRONICS AND DRIVES	L	Т	Р	C
		0	0	4	2
COURSE ()BJECTIVES:				
• Design	n and test isolated and non-isolated power electronic converters				
• Study	the need for a power quality analyzer				
• Demo	nstrate and develop a mini project of societal importance				
LIST OF E	XPERIMENTS				
1.	Selection and Design of components (Inductor, Capacitor, transformers as power converters	nd de	vices	s) foi	[
2.	Design and testing of isolated converter.				
3.	Design and testing of non-isolated converter.				
4.	Analyzing the performance parameters of power electronic converters usi analyse.	ng po	ower	qual	ity
5.	Mini Project Demonstration with applications.				
	ΤΟΤΑ	4L: 6	60 PH	ERIC	DDS
COURSE (OUTCOMES:				

At the end of the course, the students will be able to:

At the end of the course, the students will be able to:						
CO1:	Select suitable components for the design of power electronics circuits					
CO2:	Design and test isolated power electronics converter circuits					
CO3:	Design and test Non-isolated power electronics converter circuits					
CO4:	Analyze the quality of power in power electronic circuits using power quality analyzer					
CO5:	Develop a mini project of societal importance.					

Course	Program Outcomes						
outcome	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	2	1	1	1	2	
CO2	2	2	2	1	1	2	
CO3	2	2	2	1	1	2	
CO4	2	2	3	1	2	1	
CO5	3	3	3	3	3	3	
CO	2	2.2	2.2	1.4	1.6	2	

PE22104	TECHNICAL SEMINAR	L	Т	Р	C			
		0	0	2	1			
COURSE	OBJECTIVES:							
• · To	work on a specific technical topic in Power Electronics and Drives in ord	ler to	o ace	quire	the			
skill	of oral presentation and to acquire technical writing abilities for seminars an	d coi	nfere	ences				
COURSE	OVERVIEW							
1	The students will work for two hours per week guided by a group of staff members. They will be asked to talk on any topic of their choice related to Power Electronics and Drives and to engage in dialogue with the audience. A brief copy of their talk also should be submitted. Similarly, the students will have to present a seminar of not less than fifteen minutes and not more than thirty minutes on the technical topic. They will also answer the queries on the topic. The students as audience also should interact. Evaluation will be based on the technical presentation and the report and also on the interaction during the seminar.							
	ΤΟΤΑ	L: 3	60 PI	ERIC	DDS			
COURSE	OUTCOMES:							
At the end	of the course, the students will be able to:							
CO1:	Identify latest developments in the field of Power Electronics and Drives							
CO2:	Develop technical writing abilities for seminars, conferences and journal pub	licati	ons					
CO3:	Make use of modern tools to present the technical details							

Course	Program Outcomes					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	-	-	-	-
CO2	-	3	3	-	-	-
CO3	-	-	-	-	-	-
СО	3	3	3	-	-	-

PE22201	ANALYSIS OF ELECTRICAL MACHINES	L	Т	Р	С
---------	---------------------------------	---	---	---	---

		3	1	0	4
COURSE O	BJECTIVES:				
	lerstand the principles of electromechanical energy conversion in ele now the dynamic characteristics of DC motors	ctrica	al m	nachi	nes
	ly the concepts related with AC machines, magnetic noise and harmo	onics	in	rota	ting
	al machines				
	rpret the principles of reference frame theory	1 .	<u> </u>	1	
	ly the principles of three phase, doubly fed and 'n' phase induction mac and reference variables	hine	in 1	mach	iine
	erstand the principles of three phase, synchronous machine in machin	ne v	ariał	les	and
	ce variables		unuc	105	unu
UNIT I	ELECTROMECHANICAL ENERGY CONVERSION and DC MAC	HIN	ES		12
force and torce steady state of	uits, permanent magnet, Energy conservation – stored magnetic energy, co- jue in singly and doubly excited systems – Elementary DC machine and an operation – Voltage and torque equations – dynamic characteristics – DC diagrams – solution of dynamic characteristic by Laplace transformation	alysis	s of		ime
UNIT II	AC MACHINES – CONCEPTS				12
Linkage and	Vindings – Winding Functions – Air-Gap Magneto motive Force –Rotati Inductance –Resistance –Voltage and Flux Linkage Equations for Dist agnetic noise and harmonics in rotating electrical machines. Modeling of 'n	ribut	ted V	Wind	ling
UNIT III	REFERENCE FRAME THEORY				12
variables from	ckground – phase transformation and commutator transformation – transformation – transformation of balanced set-values of reference				
UNIT IV	MODELLING OF INDUCTION MACHINES				12
steady state variables and	induction machine and doubly fed induction machine- equivalent circuit operation – free acceleration characteristics – voltage and torque equat arbitrary reference frame variables – analysis of dynamic performance ansformation theory for 'n' phase induction machine.	ions	in 1	mach	nine
UNIT V	MODELLING OF SYNCHRONOUS MACHINES				12
equations in	ynchronous machine and analysis of steady state operation – voltage and to machine variables and rotor reference frame variables (Park's equation prmance for load torque variations			lysis	of
	ΤΟΤΑ	L: 6() PE	RIC	DS
COURSE O	UTCOMES:				

At the	end of the course, the students will be able to:						
CO1	Analyze the principles of energy conversion and characteristics of DC motors						
CO2	Examine the modelling of AC machines						
CO3	Analyze the concepts of reference frame theory						
CO4	Develop induction machine model in both machine variable and reference variable forms						
CO5	Develop synchronous machine model in machine variables and reference variable form						
REFE	RENCES:						
1	Stephen D. Umans, "Fitzgerald & Kingsley's Electric Machinery", Tata McGraw Hill, 7th						
	Edition,2020.						
2	Bogdan M. Wilamowski, J. David Irwin, The Industrial Electronics Handbook, Second Edition,						
	Power Electronics and Motor Drives, CRC Press, 2011						
3	Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, Steven D. Pekarek, "Analysis of Electric						
	Machinery and Drive Systems", 3 rd Edition, Wiley-IEEE Press, 2013.						
4	R. Krishnan, Electric Motor & Drives: Modeling, Analysis and Control, Pearson Education, 1 st						
	Imprint, 2015.						
5	R.Ramanujam, Modeling and Analysis of Electrical Machines, I.k. International Publishing House						
	Pvt.Ltd,2018						

Course			Progra	m Outcomes		
outcome	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	3	2	1
CO2	1	1	1	3	2	1
CO3	1	1	1	3	2	1
CO4	1	1	1	3	2	1
CO5	1	1	1	3	2	1
СО	1	1	1	3	2	1

Table of specification for end semester question paper

PE22201 ANALYSIS OF ELECTRICAL MACHINES

			Cognitive Level						
Unit No. and Title	Total 2	Total 16	Remember	Understand (Un)	110	Analyse(An)			
Onit 100, and Thie	Marks	Marks	(Kn) (Un) (Ay) No. of Qns. (marks) and CO CO						
Unit-I: Electromechanic al Energy Conversion and Dc Machines	2	1 either or	2(2) – CO1	-	-	1 either or (16) – CO1			
Unit-II: AC Machines – Concepts	2	1 either or	2(2) – CO2	-	1 either or (16) — CO2	-			
Unit-III: Reference Frame Theory	2	1 either or	2(2) — CO3	-	-	1 either or (16) – CO3			
Unit-IV: Modelling of Induction Machines	2	I either or	2(2) – CO4	-	-	1 either or (16) – CO4			
Unit-V: Modelling of Synchronous Machines	2	I either or	2(2) – COS	-	-	1 either or (16) – CO5			
Total Qns.	10	5 either or	10(2)	-	-	5 either or (16)			
Total Marks	20	80	20	-	-	80			
Weightage	20 %	80%	20%	-	-	80%			
		W	eightage for (II				
	CO1	CO 2				CO5			
Total Marks	20	20	20	20		20			
Weightage	20%	20%	20%	20%)	20%			

PE22203	SYSTEM DESIGN USING MICROCONTROLLER	L	Т	Р	С				
		3	0	0	3				
COURSE O	BJECTIVES:								
• To rec	ognize the basics of PIC and ARM microcontrollers.								
• To und	erstand the interfacing and peripherals of PIC Microcontroller.								
• To real	ise the organization of ARM.								
• To app	ly the concepts for programming in PIC and ARM microcontroller.								
• To exa	mine the various applications of PIC and ARM microcontroller.								
UNIT I	INTRODUCTION TO PIC MICROCONTROLLER				9				
PIC Archite	cture - Memory organization - Instruction set -Addressing modes- PIC	prog	gram	min	g in				
Assembly &	C - Simple operations - I/O port - Timer programming.								
UNIT II	INTERRUPTS AND INTERFACING				9				
Interrupt Pro	gramming – LCD and keyboard Interfacing – ADC Characteristics – D.	AC	Inter	facir	ig –				
	facing and Signal Conditioning.				-				
UNIT III	APPLICATIONS				9				
Relays and	Dptoisolators – Stepper Motor – DC Motor – PWM Motor Control with C	CCP	– D	СМ					
Control with	ECCP.								
UNIT IV	INTRODUCTION TO ARM PROCESSOR				9				
ARM Archit	ecture – ARM programmer's model – ARM Development tools- Memory H	Iiera	rchy	– A	RM				
Assembly La	nguage Programming – Simple Examples – Architectural Support for Opera	ting	syste	ems.					
UNIT V	ARM ORGANIZATION				9				
3-Stage Pipe	line ARM Organization – 5-Stage Pipeline ARM Organization –ARM Instr	ructio	on E	xecu	tion				
– ARM Imp	elementation – ARM Instruction Set – Architectural support for High Le	vel	Lang	guage	es –				
Embedded A	RM Applications.								
	ΤΟΤΑ	L: 4	5 PE	ERIC)DS				
COURSE O	UTCOMES:								
At the end o	f the course, the students will be able to:								
CO1 I	Recognize the basics of PIC microcontroller.								
CO2	Jnderstand the interfacing and peripherals of PIC Microcontroller.								
CO3 I	Examine the various applications of PIC microcontroller.								
	Recognize the basics of ARM microcontroller.								
CO5 I	Realize the organization of ARM.								
CO5									

REFEI	RENCES:
1.	Muhammad Ali Mazidi, Rolin D.Mckinlay, Danny Causey ' PIC Microcontroller and Embedded
	Systems using Assembly and C for PIC18', Pearson Education 2008.
2.	Steve Furber, 'ARM system on chip architecture', Addison Wesley, 2010.
3.	
	Guide Designing and Optimizing System Software', Elsevier 2007.
4.	John Iovine, 'PIC Microcontroller Project Book', McGraw Hill, 2000.
5.	William Hohl, ARM Assembly Language" Fundamentals and Techniques, 2009.

Course	Program Outcomes							
outcome	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	2	2	1	1		
CO2	1	-	2	2	1	1		
CO3	1	-	2	2	1	1		
CO4	1	3	2	2	1	1		
CO5	1	-	2	2	1	1		
СО	1	3	2	2	1	1		

Table of Specification for End Semester Question Paper

PE22203 SYSTEM DESIGN USING MICROCONTROLLER

			Cognitive Level				
Unit No. and Title	Total 2 Marks	Total 16 Marks	Remember (Kn)	Understand (Un)	Apply (Ay)	Analy se(An)	
			N	No. of Qns. (marks) a	and CO		
Unit-I: Introduction to PIC Microcontroller	2	1 either or	1(2) – CO1	1(2) — CO1 1 either or (16) – CO1	-	-	
Unit-II: Interrupts and Interfacing	2	1 either or	1(2) – CO2	1(2) — CO2 1 either or (16) – CO2	-	-	
Unit-III: Applications	2	1 either or	1(2) — CO3	1(2) — CO3	1 either or (16) – CO3	-	

Unit-IV: Introduction to ARM Processor	2	1 either or	2(2) – CO4	1 either or (16) – CO4	-	-			
Unit-V: ARM Organization	2	1 either or	2(2) – CO5	1 either or (16) – CO5	-	-			
Total Qns.	10	5 either or	7(2)	3(2) 4 either or (16)	1 either or (16) – CO5	-			
Total Marks	20	80	14	70	16	-			
Weightage	20 %	80%	14%	70%	16%	-			
Weightage for Cos									
	CO1	CO2	CO3	CO4	CO5				
Total Marks	20	20	20	20	20				
Weightage	20%	20%	20%	20%	20%				

PE22204	ELECTRIC VEHICLES AND POWER MANAGEMENT	L	Т	Р	С	
1 E22204	ELECTRIC VEHICLES AND I OWER MANAGEMENT	L 3	0	0	C 3	
COURSE OBJE	ECTIVES:					
• Understan	d the concept of electric vehicles and its operations					
• Illustrate th	ne architecture of Electric Vehicle (EV) and Hybrid Electric vehicle (HE	V)				
Understand	the need for energy storage in hybrid vehicles					
Understand	l various alternative energy storage technologies that can be used in elect	ric v	/ehi	cles		
UNIT I	INTRODUCTION TO ELECTRIC VEHICLES				9	
Vehicle mass an Power train com	d Performance, Electric Motor ratings, Comparison of EV with IC Enponents	ngino	e ve	ehicl	es,	
UNIT II	VEHICLE MECHANICS				9	
Roadway Funda	mentals, Laws of Motion, Vehicle Kinetics, Dynamics of Vehicle Moti and Acceleration, Tire–Road Force Mechanics, Propulsion System Desig		Proj	puls	-	
UNIT III	ARCHITECTURE OF EV's AND POWER TRAIN COMPONENT	ГS			9	
	EV's and HEV's, Plug-in Hybrid Electric Vehicles (PHEV), Power tras, Clutches, Transmission and Brakes.	in co	omp	one	nts	
UNIT IV	BATTERY ENERGY STORAGE SYSTEM				9	
	Different types of batteries, Battery Parameters, Electrochemical Cell g, Batteries for traction applications, Battery pack management.	Fun	dan	nenta	ıls,	
UNIT V ALTERNATIVE ENERGY STORAGE SYSTEMS						
• -	s of fuel cell, Fuel cell model, Hydrogen storage systems, Fuel cell el Compressed air storage and flywheels for transportation applications.	lectr	ic v	vehic	:le,	

At the end of the course, the students will be able to:

At the e	nd of the course, the students will be able to:
CO1:	Understand and compare electric vehicle and IC engine driven vehicles
CO2:	Explain the mechanics of motion of a vehicle
CO3:	Illustrate the working and components of Electric Vehicle and Hybrid Electric Vehicle
CO4:	Illustrate the operation of battery storage system
CO5:	Understand the various alternative energy storage systems for EV applications
REFER	ENCES:
1.	Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals, Second Edition" CRC
	Press, Taylor & Francis Group, Second Edition (2011).
2.	Ali Emadi, Mehrdad Ehsani, John M.Miller, "Vehicular Electric Power Systems", Special
	Indian Edition, Marcel dekker, Inc 2010.
3	Mehrdad Ehsani, YiminGao, Sebastian E. Gay, Ali Emadi, 'Modern Electric, Hybrid Electric
	and Fuel Cell Vehicles: Fundamentals, Theory and Design', CRC Press, 2004.
4	C.C. Chan and K.T. Chau, 'Modern Electric Vehicle Technology', OXFORD University
	Press, 2001.
5	Wie Liu, "Hybrid Electric Vehicle System Modeling and Control", Second Edition, John
	Wiley & Sons, 2017

Course	Program Outcomes							
outcome	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	3	-	-	-		
CO2	-	-	3	-	2	-		
CO3	2	-	3	-	1	2		
CO4	-	-	3	2	1	-		
CO5	2	_	3	-	-	-		
СО	1.6	-	3	2	1.33	2		

Table of Specification for End Semester Question Paper

PE22204 ELECTRIC VEHICLES AND POWER MANAGEMENT

				Cogniti	ve Level	
	Total 2	Total 16	Remember	Understand	11.	Analyse(An)
Unit No. and Title	Marks	Marks	(Kn)	(Un)	(Ay)	
			N	o. of Qns. (ma		
Unit-I:		1 .1			-1 either or	
Introduction to Electric Vehicles	2	1 either or	2(2) – CO1	-	(16) – CO1	-
					1 either or	
Unit-II: Vehicle Mechanics	2	1 either or	2(2) – CO2	-	(16) — CO2	-
Unit-III: Architecture of					1 either or	
Ev's And Power	2	1 either or	2(2) — CO3	-		-
Train					(16) – CO1	
Components						
`					1 either or	
Unit-IV: Battery	2	I either or	2(2) - CO4	-		-
Energy Storage					(16) – CO1	
System						
Unit-V:					1 either or	
Alternative Energy Storage Systems	2	I either or	2(2) – COS	-	(16) – CO1	-
					5 either or	
Total Qns.	10	5 either or	10(2)	-	(16)	-
Total Marks	20	80	20	-	80	-
Weightage	20 %	80%	20%	-	80%	-
		W	eightage for (Cos		·
	CO1	CO2	CO3	CO		CO5
Total Marks	20	20	20	20		20
Weightage	20%	20%	20%	20%		20%

PE22202	ANALYSIS OF ELECTRICAL DRIVES	L	Т	Р	С
		3	0	2	4
COURSE O	DBJECTIVES:				
• To unc	lerstand steady state operation and transient dynamics of a motor load syste	m			
• To stu	dy and analyse the operation of the converter / chopper fed DC drive, both	qua	itati	vely	and
quanti	tatively				
• To ana	alyse and design the current and speed controllers for a closed loop solid	l sta	te D	C m	otor
drive					
• To un	derstand the drive characteristics for different load torque profiles a	nd o	quad	rants	s of
operati	on				
• To und	lerstand the speed control of induction motor drive from stator and rotor sid	les			
• To stu	dy and analyse the operation of VSI &CSI fed induction motor control	and	pul	se w	idth
	ation techniques		1		
UNIT I	DC MOTORS FUNDAMENTALS AND MECHANICAL SYSTEMS				9
DC motor-	speed-torque relations, Speed control – Armature and field speed contro	l; W	ard	Leon	nard
	onstant torque and constant horse power operation. Characteristics of me				
dynamic eq	uations, components of torque, types of load; Requirements of drives	cha	acte	ristic	cs –
stability of d	rives-multi-quadrant operation; Drive elements, types of motor duty and s	elect	ion	of m	otoi
rating					
UNIT II	CONVERTER AND CHOPPER CONTROL				9
Introduction performance	phase and three-phase converters –performance parameters, performanc to time ratio control and frequency modulation; chopper controlle analysis, multi-quadrant control; Related problems				r –
UNIT III	CLOSED LOOP CONTROL				9
motors; Line	of drive elements – Equivalent circuit, transfer function of self, separate ear Transfer function model of power converters; Sensing and feeds back ex- ontrol – current and speed loops.				
UNIT IV	VSI AND CSI FED STATOR CONTROLLED INDUCTION MOTO	R D	RIV	ES	9
AC voltage	controller – six step inverter voltage control-closed loop variable frequence	cy P	WM	inve	erter
	n motor (IM) with braking-CSI fed IM variable frequency motor drives.	•			
UNIT V	ROTOR CONTROLLED INDUCTION MOTOR DRIVES				9
	resistance control – injection of voltage in the rotor circuit – static scherbi d Kramer drives – sub-synchronous and super-synchronous speed operation				
	XPERIMENTS: Ilation of closed loop control of Converter fed DC drive.				
	lation of Speed control of Converter fed DC motor.				
	lation of Speed control of Chopper fed DC motor.				
	lation of VSI fed three phase Induction motor drive.				
	lation of AC voltage Controller based speed control of induction motor.				
5. Simu					
5. Simu	TOTAL:(45+30))= 7:	5PE	RIO	DS

At the en	d of the course, the students will be able to:
CO1:	Explain the converter/machine dynamics.
CO2:	Analyse and simulate direct current motor based adjustable speed drives.
CO3:	Design a closed loop motor drive system with controllers for the current and speed control operations.
CO4:	Analyse and simulate stator side control of Induction motor based adjustable speed drives.
CO5:	Analyse rotor side control of Induction motor based adjustable speed drives.
REFERE	ENCES:
1	Gopal K Dubey, "Power Semiconductor controlled Drives", Prentice Hall Inc., New Jersy, 1989
2	R.Krishnan, "Electric Motor Drives – Modeling, Analysis and Control", Prentice-Hall of India Pvt. Ltd., New Delhi,2010
3	Bimal K Bose, "Modern Power Electronics and AC Drives", Pearson Education Asia2002
4	Gopal K.Dubey, "Fundamentals of Electrical Drives", Narosa Publishing House, New Delhi, Second Edition, 2009.
5	Vedam Subramanyam, "Electric Drives – Concepts and Applications", Tata McGraw- Hill publishing company Ltd., New Delhi, 2002.
6	P.C Sen "Thyristor DC Drives", John wiely and sons, New York, 1981.
7	W.Leonhard, "Control of Electrical Drives", Narosa Publishing House, 1992.
8	Murphy J.M.D and Turnbull, "Thyristor Control of AC Motors", Pergamon Press, Oxford, 1988.

Course	Program Outcomes							
outcome	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	-	2	3	1	-		
CO2	2	-	2	3	1	-		
CO3	2	-	2	3	3	1		
CO4	3	3	2	3	1	2		
CO5	3	-	2	3	1	1		
СО	2.4	3	2	3	1.4	1.33		

Table of Specification for End Semester Question Paper

PE22202-	Analysis	of Electrical	l Drives
----------	----------	---------------	----------

				Cognitive I	Level			
	Total 2	Total 16Mark	Remember	Understand	Apply	Analyse(An)		
UnitNo.andTitle	Marks	Iowiark S	(Kn) (Un) (Ay)					
				lo.ofQns.(marks) an				
Unit-I:				1(2) - CO1				
DCMotors	2	1 either or	1(2) – CO1	1 either or(16) -				
Fundamentals				CO1	-	-		
and Mechanical				COI				
Systems				1(2) CO2				
Unit-II:	2	1 either or	1(2) - CO2	1(2) - CO2		1 either or(16)		
Converter and		i citilei oi	1(2) 002		-	- CO2		
Chopper Control								
				1(2) — CO3				
Unit-III: Closed	2	1 either or	1(2) - CO3		_	1 either $or(16)$		
Loop Control						- CO3		
						1 at the arr $ar(16)$		
Unit-IV: VSI and						1 either or(16)		
CSI Fed Stator	2	1 either or	2(2) - CO4	-		- CO4		
Controlled								
Induction Motor								
Drives						1 either or(16)		
Unit-V: Rotor		1	2(2) CO5					
Controlled	2	1 either or	2(2) – CO5	-	-	- CO5		
Induction Motor Drives								
Drives				3(2)				
	10	5 either or	7(2)	J(2)				
TotalQns.				1 either or (16)	-	4 either or (16)		
				· · ·				
TotalMarks	20	80	14	22	-	64		
	20.04	000/	1.40/	220/		-		
Weightage	20 %	80%	14%	22%	-	64%		
			Weightagefor	COs				
	CO1	CO2	CO3	CO4	(CO5		
TotalMarks	20	20	20	20		20		
Weightage	20%	20%	20%	20%		20%		

PE22205	ANALOG AND DIGITAL CONTROLLERS FOR PE CONVERTERS LABORATORY	L	Т	Р	C			
		0	0	4	2			
COURSE ()BJECTIVES:							
• Under	stand the concepts related with analog and digital controllers							
• Desig	n circuits for power electronics applications using op-amps and microcom	rollers						
• Desig	n the driver circuits, sensing circuits for power converters							
• Study	the effect of digital controller for power converters							
LIST OF E	XPERIMENTS							
1.	Analyze the switching characteristics of various power semiconductor of	levices	•					
2.	Design and verification of amplifier, buffer and filter for power electronic circuits.							
3.	Design of driver circuits for power converters.							
4.	Generation of PWM gate pulses with duty cycle control.							
5.	Design closed loop P, I and PI controllers for power electronic circuits							
	ΤΟ	ГAL: б	50 PH	ERIC)D			
COURSE (DUTCOMES:							

At the end of the course, the students will be able to:CO1:Analyze the switching characteristics of power semiconductor devices.CO2:Design amplifier, buffer and filter circuits for power electronic applicationsCO3:Design driver circuit for power converter applicationsCO4:Implement PWM technique to generate firing pulses for converter circuitsCO5:Design closed loop controllers for power electronic circuits

Course	Program Outcomes						
outcome	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	-	2	3	1	-	1	
CO2	1	2	3	1	1	1	
CO3	1	2	3	1	1	1	
CO4	1	2	3	1	1	2	
CO5	1	2	3	1	-	1	
СО	1	2	3	1	1	1.2	

RM22201	RESEARCH TOOL LABORATORY	L	Т	Р	С				
		0	0	4	2				
COURSE	OBJECTIVES:	•							
• To f	amiliarize the fundamental concepts/techniques for Project Managen	nent							
• To f	amiliarize the journal paper formatting using suitable Software								
• To f	amiliarise the software for literature review and Bibliography								
• To f	ind the plagiarism percentage of article contents								
• Top	prepare a quality research report and the presentation								
LIST OF	EXPERIMENTS:								
1.	Use of tools / Techniques for Research - Project management - Microsoft Project / Microsoft OneNote / Asana.								
2.	Hands on Training related to Software for Paper Formatting like LaTeX / MS Office								
3.	Design a Layout of a Research Paper - Guidelines for Submitting the Research Paper - Review Process - Addressing Reviewer Comments.								
4.	Introduction to Data Analysis Software - Origin SPSS, ANOVA etc.,								
5.	Introduction to Software for detection of Plagiarism – Urkund, Turniton								
6.	Preparing Bibliography / Different Reference Formats. – EndNote, Mently								
	Format of Project Report - Use of Quotations - Method of Transce	ripti	on-						
7.	Elements: Title Page - Abstract - Table of Contents - Headings and Sub-								
	Headings - Footnotes - Tables and Figures								
8.	Introduction to Microsoft Excel –for Research Analysis								
9.	Presentation using PPTs.								
10.	Data analysis using Matlab.								
	ΤΟΤΑ	L: 6	0 PE	CRIC	DS				
COURSE	OUTCOMES:								
At the end	l of the course, the students will be able to:								
CO1:	List the various stages in research and develop systematic planning of	of pr	ojec	t					
000	stages.								
CO2:	Write a journal paper and formulate as per the standard journal form			•					
CO3:	Develop a literature review and relevant references for a research problem using suitable software.								
CO4:	Determine the plagiarism of the article / report content by using the Software								
CO5:	Compile a research report and the presentation								

Course	Program Outcomes								
outcome	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	-	-	2	-			
CO2	2	3	-	-	-	-			
CO3	-	2	-	-	-	-			
CO4	-	2	-	-	-	-			
CO5	-	3	-	-	-	2			
CO	2	2	-	-	2	2			

PE22111	POWER SEMICONDUCTOR DEVICES	L	Т	Р	С
		3	0	0	3
COURSE OBJE	CTIVES:	I	1		
• To understa	nd the concepts related with power switches and its requirements				
	and the working, steady state and switching characteristics of current con- ilicon devices	ntrollec	l and	volt	age
• To study the	e working of driving circuits for power devices				
• To understa	nd the thermal characteristics of power devices and design heat sink for t	he pow	er de	vice	s
UNIT I	INTRODUCTION				9
Characteristics an	nd specifications of switches-Ideal characteristics, Practical characteris	tics, S	pecif	icatio	ons,
	s, Power diodes – Basic Structure, static characteristics, Breakdown vol				
					ль,
Depletion layer b	boundary control, ON state losses, switching characteristics, Electroma				
	boundary control, ON state losses, switching characteristics, Electromator materials for power devices.				
New semiconduct	tor materials for power devices.	agnetic	inter	ferei	nce, 9
New semiconduct UNIT II Power BJT – Cor	tor materials for power devices. CURRENT CONTROLLED DEVICES	state lo	inter osses	ferei	nce, 9 ond
New semiconduct UNIT II Power BJT – Cor breakdown, Safe	tor materials for power devices. CURRENT CONTROLLED DEVICES Instruction, static characteristics, Operation, switching characteristics, ON	state lo	inter osses	ferei	nce, 9 ond
New semiconduct UNIT II Power BJT – Cor breakdown, Safe two transistor mo UNIT III	tor materials for power devices. CURRENT CONTROLLED DEVICES Instruction, static characteristics, Operation, switching characteristics, ON operating areas. SCR (Thyristor) – Construction, working, static and tran del, Comparison of Power BJT and SCR, Basic structure and operation of VOLTAGE CONTROLLED DEVICES	state lo sient ch f GTO.	inter osses, narac	feren , Sec terist	nce, 9 ond tics, 9
New semiconduct UNIT II Power BJT – Cor breakdown, Safe two transistor mo UNIT III Principle of volta	tor materials for power devices. CURRENT CONTROLLED DEVICES Instruction, static characteristics, Operation, switching characteristics, ON operating areas. SCR (Thyristor) – Construction, working, static and tran del, Comparison of Power BJT and SCR, Basic structure and operation of VOLTAGE CONTROLLED DEVICES age controlled devices, Power MOSFET – Construction, Operation, static	state lo sient ch f GTO.	inter osses, narac	feren , Sec terist witch	nce, 9 ond tics, 9 ning
New semiconduct UNIT II Power BJT – Cor breakdown, Safe two transistor mo UNIT III Principle of volta characteristics, Iu	tor materials for power devices. CURRENT CONTROLLED DEVICES Instruction, static characteristics, Operation, switching characteristics, ON operating areas. SCR (Thyristor) – Construction, working, static and tran del, Comparison of Power BJT and SCR, Basic structure and operation of VOLTAGE CONTROLLED DEVICES age controlled devices, Power MOSFET – Construction, Operation, s GBT- Basic structure, Static and switching characteristics, Operation	state lo state lo sient ch f GTO.	inter osses narac nd sy ch u	feren , Sec terist witch	nce, 9 ond tics, 9 ning Safe
New semiconduct UNIT II Power BJT – Cor breakdown, Safe two transistor mo UNIT III Principle of volta characteristics, Ie operating areas, H	tor materials for power devices. CURRENT CONTROLLED DEVICES Instruction, static characteristics, Operation, switching characteristics, ON operating areas. SCR (Thyristor) – Construction, working, static and tran del, Comparison of Power BJT and SCR, Basic structure and operation of VOLTAGE CONTROLLED DEVICES age controlled devices, Power MOSFET – Construction, Operation, s GBT- Basic structure, Static and switching characteristics, Operation Basic structure and operation of field controlled thyristor. Basic Structure	state lo state lo sient ch f GTO.	inter osses narac nd sy ch u	feren , Sec terist witch	nce, 9 ond tics, 9 ning Safe
New semiconduct UNIT II Power BJT – Cor breakdown, Safe two transistor mo UNIT III Principle of volta characteristics, Ia operating areas, I commutated thyri	tor materials for power devices. CURRENT CONTROLLED DEVICES Instruction, static characteristics, Operation, switching characteristics, ON operating areas. SCR (Thyristor) – Construction, working, static and tran del, Comparison of Power BJT and SCR, Basic structure and operation of VOLTAGE CONTROLLED DEVICES age controlled devices, Power MOSFET – Construction, Operation, s GBT- Basic structure, Static and switching characteristics, Operatio Basic structure and operation of field controlled thyristor. Basic Structure stor (IGCT).	state lo state lo sient ch f GTO.	inter osses narac nd sy ch u	feren , Sec terist witch	nce, 9 ond tics, 9 ning Safe
New semiconduct UNIT II Power BJT – Cor breakdown, Safe two transistor mo UNIT III Principle of volta characteristics, Ie operating areas, H	tor materials for power devices. CURRENT CONTROLLED DEVICES Instruction, static characteristics, Operation, switching characteristics, ON operating areas. SCR (Thyristor) – Construction, working, static and tran del, Comparison of Power BJT and SCR, Basic structure and operation of VOLTAGE CONTROLLED DEVICES age controlled devices, Power MOSFET – Construction, Operation, s GBT- Basic structure, Static and switching characteristics, Operation Basic structure and operation of field controlled thyristor. Basic Structure	state lo state lo sient ch f GTO.	inter osses narac nd sy ch u	feren , Sec terist witch	nce, 9 ond tics, 9 ning Safe
New semiconduct UNIT II Power BJT – Cor breakdown, Safe two transistor mo UNIT III Principle of volta characteristics, Ie operating areas, H commutated thyri UNIT IV Design considerat	tor materials for power devices. CURRENT CONTROLLED DEVICES Instruction, static characteristics, Operation, switching characteristics, ON operating areas. SCR (Thyristor) – Construction, working, static and tran del, Comparison of Power BJT and SCR, Basic structure and operation of VOLTAGE CONTROLLED DEVICES age controlled devices, Power MOSFET – Construction, Operation, s GBT- Basic structure, Static and switching characteristics, Operatic Basic structure and operation of field controlled thyristor. Basic Structur stor (IGCT). ISOLATION AND DRIVER CIRCUITS tions, DC coupled drive circuits for power BJT and power MOSFET, Net	state lo sient ch f GTO. static an on, Lat re of In eccessity	inter osses, harac nd sy ch u tegra	feren , Sec terist witch up, S uted g	9 ond tics, 9 ning Safe gate 9 ion,
New semiconduct UNIT II Power BJT – Cor breakdown, Safe two transistor mo UNIT III Principle of volta characteristics, IG operating areas, I commutated thyri UNIT IV Design considerat Pulse transformer	tor materials for power devices. CURRENT CONTROLLED DEVICES Instruction, static characteristics, Operation, switching characteristics, ON operating areas. SCR (Thyristor) – Construction, working, static and tran del, Comparison of Power BJT and SCR, Basic structure and operation of VOLTAGE CONTROLLED DEVICES age controlled devices, Power MOSFET – Construction, Operation, s GBT- Basic structure, Static and switching characteristics, Operation Basic structure, Static and switching characteristics, Operation Basic structure, Static and switching characteristics, Operation Basic structure and operation of field controlled thyristor. Basic Structur Basic structure and operation of field controlled thyristor. Basic Structur Basic structure and operation of field controlled thyristor. Basic Structur Basic structure and operation of field controlled thyristor. Basic Structur Basic structure and operation of field controlled thyristor. Basic Structur Basic structure and operation of field controlled thyristor. Basic Structur Basic structure and operation of field controlled thyristor. Basic Structur Structure and operation of field controlled thyristor. Basic Structur Structure and operation of field controlled	state lo sient ch f GTO. static an on, Lat re of In eccessity	inter osses, harac nd sy ch u tegra	feren , Sec terist witch up, S uted g	9 ond tics, 9 ning Safe gate 9 ion,
New semiconduct UNIT II Power BJT – Cor breakdown, Safe two transistor mo UNIT III Principle of volta characteristics, IG operating areas, I commutated thyri UNIT IV Design considerat Pulse transformer	tor materials for power devices. CURRENT CONTROLLED DEVICES Instruction, static characteristics, Operation, switching characteristics, ON operating areas. SCR (Thyristor) – Construction, working, static and tran del, Comparison of Power BJT and SCR, Basic structure and operation of VOLTAGE CONTROLLED DEVICES age controlled devices, Power MOSFET – Construction, Operation, s GBT- Basic structure, Static and switching characteristics, Operatic Basic structure and operation of field controlled thyristor. Basic Structur stor (IGCT). ISOLATION AND DRIVER CIRCUITS tions, DC coupled drive circuits for power BJT and power MOSFET, Network	state lo sient ch f GTO. static an on, Lat re of In eccessity	inter osses, harac nd sy ch u tegra	feren , Sec terist witch up, S uted g	9 ond tics, 9 ning Safe gate 9 ion,

Control of semiconductor device temperature, Heat transfer by conduction, convection and radiation, Thermal resistance and impedance, Electrical analogy of thermal components, Heat sinks, Cooling – liquid cooling, vapour phase cooling

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end o	f the course, the students will be able to:
CO1:	Analyze the working and characteristics of power diodes.
CO2:	Analyze the working and characteristics of various current controlled devices.
CO3:	Analyze the working and characteristics of various voltage controlled devices.
CO4:	Employ suitable techniques and construct drive circuits for power semiconductor devices.
CO5:	Determine the electrical and mechanical parameters of a heat sink using equivalent circuits.
REFERENC	ZES:
1	Ned Mohan, T.M.Undeland and W.P.Robbins, "Power Electronics: converters, Application
	and design", 3rd edition Wiley, 2007
2	Rashid M.H., "Power Electronics Circuits, Devices and Applications ", Pearson, 4th Edition,
	10th Impression 2021
3	Tsunenobu Kimoto and James A. Cooper, Fundamentals of Silicon Carbide Technology:
	Growth, Characterization, Devices, and Applications, First Edition., 2014 John Wiley & Sons
	Singapore Pvt Ltd
4	Alex Lidow, Johan Strydom, Michael de Rooij, David Reusch, "GaN Transistors for Efficient
	Power Conversion", Second Edition, Wiley, 2015
5	Biswanath Paul, Power Electronics, Universities Press 2019.

Mapping of Course Outcomes to Program Outcomes

Course	Program Outcomes							
outcome	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	3	-	-	1		
CO2	-	-	3	-	-	1		
CO3	2	-	3	-	-	1		
CO4	-	-	3	2	1	1		
CO5	2	-	3	-	1	1		
СО	1	-	3	2	1	1		

Table of Specification for End Semester Question Paper

PE22111: POWER SEMICONDUCTOR DEVICES

				Cognitiv	ve Level			
	Total 2	Total 16	Remember	Understand	Apply	Analyse(An)		
Unit No. and Title	Marks	Marks	(Kn)	(Un)	(Ay)			
			No. of Qns. (marks) and CO					
		1either or		1 either or				
Unit-I:	2		2(2) - CO1	(16) CO1	-	-		
Introduction				(16) – CO1				
Unit-II:		1either or		1 either or				
Current	2		2(2) - CO2		-	_		
Controlled				(16) — CO2				
Devices								
Unit-III: Voltage		1either or		1 either or				
Controlled	2		2(2) - CO3	(16) CO2	-	-		
Devices				(16) – CO3				
Unit-IV:		1either or		1 either or				
Isolation and	2		2(2) - CO4		-	-		
Driver Circuits				(16) – CO4				
		1either or		1 either or				
Unit-V: Thermal	2		2(2) - CO5		-	-		
Protection				(16) – CO5				
	10	1either or	10(2)	5 (10)	_			
Total Qns.	10		10(2)	5 (10)	-			
Total Marks	20	80	20	80	-	-		
Weightage	20 %	80%	20%	80%	-	-		
		We	eightage for C	COs				
	CO1	CO2	CO3	CO4		CO5		
Total Marks	20	20	20	20		20		
Weightage	20%	20%	20%	20%		20%		

PE22112	SPECIAL ELECTRICAL MACHINES	L	Т	Р	С
		3	0	0	3
	DBJECTIVES:	a of	01.100	hann	0110
	udy the construction, working, characteristics and speed control methods ance motors.	5 01	sync	mon	ous
	derstand the working, characteristics and speed control principles of stepper	moto	or.		
	udy the construction, working, characteristics and speed control methods			swite	hed
	ance motors.				
	ow the principle of operation, construction, characteristics and speed control e permanent magnet brushless DC motors	metl	nods		
• To un	derstand the concepts related with permanent magnet synchronous motors				
UNIT I	SYNCHRONOUS RELUCTANCE MOTORS				9
	nal features – Types – Axial and Radial flux motors – Operating princ Motors – Voltage and Torque Equations - Phasor diagram - performance s.				
UNIT II	STEPPER MOTORS				9
α , \cdot	nal features – Rotary and Linear SRM - Principle of operation – Torque pro	duct	ion -	– Ste	whe
state perform	mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control	lers	Me	thod	•
state perform	mance prediction- Analytical method -Power Converters and their control	lers	Me	thod	•
state perform Rotor positi UNIT III Construction state perform	mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control	App Oduct	Me licat ion - Me	thod ions – Ste thod	s of 9 ady s of
state perform Rotor positi UNIT III Construction state perform	mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control SWITCHED RELUCTANCE MOTORS nal features – Rotary and Linear SRM - Principle of operation – Torque pro- mance prediction- Analytical method -Power Converters and their control	App Oduct	Me licat ion - Me	thod ions – Ste thod	s of 9 ady s of
state perform Rotor positi UNIT III Construction state perform Rotor positi UNIT IV Permanent Permeance	mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control SWITCHED RELUCTANCE MOTORS nal features – Rotary and Linear SRM - Principle of operation – Torque pro- mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control PERMANENT MAGNET BRUSHLESS D.C. MOTORS Magnet materials – Minor hysteresis loop and recoil line-Magnetic of coefficient -Principle of operation – Types – Magnetic circuit analysis – Commutation - Power Converter Circuits and their controllers – Motor cl	llers App oduct llers App Char EMI	Me licat ion - Me licat racter F and	thod: ions – Ste thod: ions. ristic d tor	s of 9 ady s of 9 s - que
state perform Rotor positi UNIT III Construction state perform Rotor positi UNIT IV Permanent Permeance equations –	mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control SWITCHED RELUCTANCE MOTORS nal features – Rotary and Linear SRM - Principle of operation – Torque pro- mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control PERMANENT MAGNET BRUSHLESS D.C. MOTORS Magnet materials – Minor hysteresis loop and recoil line-Magnetic of coefficient -Principle of operation – Types – Magnetic circuit analysis – Commutation - Power Converter Circuits and their controllers – Motor cl	llers App oduct llers App Char EMI	Me licat ion - Me licat racter F and	thod: ions – Ste thod: ions. ristic d tor	s of 9 ady s of 9 s - que
state perform Rotor positi UNIT III Construction state perform Rotor positi UNIT IV Permanent Permeance equations – control– Ap UNIT V Principle of Reactance –	mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control SWITCHED RELUCTANCE MOTORS nal features – Rotary and Linear SRM - Principle of operation – Torque pro- mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control PERMANENT MAGNET BRUSHLESS D.C. MOTORS Magnet materials – Minor hysteresis loop and recoil line-Magnetic of coefficient -Principle of operation – Types – Magnetic circuit analysis – Commutation - Power Converter Circuits and their controllers – Motor cl plications	llers App oduct llers App Char EMI harac	Me licat ion - Me licat racter F and cteris	thod: ions - Ste thod: ions. ristic d tor stics ous	s of 9 ady s of 9 s – que and 9
state perform Rotor positi UNIT III Construction state perform Rotor positi UNIT IV Permanent Permeance equations – control– Ap UNIT V Principle of Reactance –	mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control SWITCHED RELUCTANCE MOTORS nal features – Rotary and Linear SRM - Principle of operation – Torque pro- mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control PERMANENT MAGNET BRUSHLESS D.C. MOTORS Magnet materials – Minor hysteresis loop and recoil line-Magnetic of coefficient -Principle of operation – Types – Magnetic circuit analysis – Commutation - Power Converter Circuits and their controllers – Motor cl plications PERMANENT MAGNET SYNCHRONOUS MOTORS operation – Ideal PMSM – EMF and Torque equations – Armature MMF – S Sine wave motor with practical windings - Phasor diagram – Torque/speed	llers App oduct llers App Char EMI harac Sync chara	Me licat ion - Me licat racter F and cteris	thod: ions - Ste thod: ions. ristic d tor stics ous istics	s of 9 ady s of 9 s – que and 9 s –
state perform Rotor positi UNIT III Construction state perform Rotor positi UNIT IV Permanent Permeance equations – control– Ap UNIT V Principle of Reactance – Power control	mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control SWITCHED RELUCTANCE MOTORS nal features – Rotary and Linear SRM - Principle of operation – Torque pro- mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control PERMANENT MAGNET BRUSHLESS D.C. MOTORS Magnet materials – Minor hysteresis loop and recoil line-Magnetic of coefficient -Principle of operation – Types – Magnetic circuit analysis – Commutation - Power Converter Circuits and their controllers – Motor cl plications PERMANENT MAGNET SYNCHRONOUS MOTORS Operation – Ideal PMSM – EMF and Torque equations – Armature MMF – S Sine wave motor with practical windings - Phasor diagram – Torque/speed collers - Converter Volt-ampere requirements– Applications	llers App oduct llers App Char EMI harac Sync chara	Me licat ion - Me licat racter F and cteris	thod: ions - Ste thod: ions. ristic d tor stics ous istics	s of 9 ady s of 9 s – que and 9 s –
state perform Rotor positi UNIT III Construction state perform Rotor positi UNIT IV Permanent Permeance equations – control– Ap UNIT V Principle of Reactance – Power control	mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control SWITCHED RELUCTANCE MOTORS nal features – Rotary and Linear SRM - Principle of operation – Torque pro- mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control PERMANENT MAGNET BRUSHLESS D.C. MOTORS Magnet materials – Minor hysteresis loop and recoil line-Magnetic of coefficient -Principle of operation – Types – Magnetic circuit analysis – Commutation - Power Converter Circuits and their controllers – Motor cl plications PERMANENT MAGNET SYNCHRONOUS MOTORS operation – Ideal PMSM – EMF and Torque equations – Armature MMF – S Sine wave motor with practical windings - Phasor diagram – Torque/speed collers - Converter Volt-ampere requirements– Applications	llers App oduct llers App Char EMI harac Sync chara	Me licat ion - Me licat racter F and cteris	thod: ions - Ste thod: ions. ristic d tor stics ous istics	s of 9 ady s of 9 s – que and 9 s –
state perform Rotor positi UNIT III Construction state perform Rotor positi UNIT IV Permanent Permeance equations – control– Ap UNIT V Principle of Reactance – Power contro COURSE C At the end	mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control SWITCHED RELUCTANCE MOTORS mal features – Rotary and Linear SRM - Principle of operation – Torque pro- mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control PERMANENT MAGNET BRUSHLESS D.C. MOTORS Magnet materials – Minor hysteresis loop and recoil line-Magnetic of coefficient -Principle of operation – Types – Magnetic circuit analysis – Commutation - Power Converter Circuits and their controllers – Motor cl plications PERMANENT MAGNET SYNCHRONOUS MOTORS operation – Ideal PMSM – EMF and Torque equations – Armature MMF – S Sine wave motor with practical windings - Phasor diagram – Torque/speed collers - Converter Volt-ampere requirements– Applications TOTA	llers App oduct llers App Char EMI harac Sync chara	Me licat ion - Me licat racter F and cteris	thod: ions - Ste thod: ions. ristic d tor stics ous istics	<pre>s of 9 ady ady s of 9 s - que and 9 s - </pre>
state perform Rotor positi UNIT III Construction state perform Rotor positi UNIT IV Permanent Permeance equations – control– Ap UNIT V Principle of Reactance – Power contru COURSE (At the end of CO1:	mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control SWITCHED RELUCTANCE MOTORS nal features – Rotary and Linear SRM - Principle of operation – Torque pro- mance prediction- Analytical method -Power Converters and their control on sensing – Sensor less operation – Characteristics and Closed loop control PERMANENT MAGNET BRUSHLESS D.C. MOTORS Magnet materials – Minor hysteresis loop and recoil line-Magnetic of coefficient -Principle of operation – Types – Magnetic circuit analysis – Commutation - Power Converter Circuits and their controllers – Motor cl plications PERMANENT MAGNET SYNCHRONOUS MOTORS operation – Ideal PMSM – EMF and Torque equations – Armature MMF – S Sine wave motor with practical windings - Phasor diagram – Torque/speed collers - Converter Volt-ampere requirements– Applications TOTA DUTCOMES: of the course, the students will be able to:	llers App oduct llers App Char EMI harac Sync chara	Me licat ion - Me licat racter F and cteris	thod: ions - Ste thod: ions. ristic d tor stics ous istics	s of 9 ady s of 9 s – que and 9 s –

CO4	: Analyze the magnetic characteristics of brushless D.C motor
COS	Compare the control methods of permanent magnet synchronous motor
REFE	RENCES:
1.	. K. Venkataratnam, 'Special Electrical Machines', Universities Press (India) Private Limited,
	2008.
2.	T.J.E. Miller, 'Brushless Permanent Magnet and Reluctance Motor Drives', Clarendon Press,
	Oxford, 1989.
3.	T. Kenjo, 'Stepping Motors and Their Microprocessor Controls', Clarendon Press London, 1984.
4	R.Krishnan, 'Switched Reluctance Motor Drives - Modeling, Simulation, Analysis, Design and
	Application', CRC Press, New York, 2001.
5	P.P. Acarnley, 'Stepping Motors - A Guide to Motor Theory and Practice', Peter Perengrinus
	London, 1982.
6	T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon
	Press,London, 1988.
7	E.G. Janardanan, 'Special electrical machines', PHI learning Private Limited, Delhi, 2014.

Course			Program	m Outcomes		
outcome	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	-	2	1	1
CO2	1	-	-	2	1	1
CO3	1	-	-	2	1	1
CO4	1	-	-	2	1	1
CO5	1	-	-	2	1	1
СО	1	-	-	2	1	1

PE22112 SPECIAL ELECTRICAL MACHINES

				Cognitiv	e Level	
	Total 2	Total 16	Remember	Understand	Apply	Analyse(An)
Unit No. and Title	Marks	Marks	(Kn)	(Un)	(Ay)	
				o. of Qns. (mar	rks) and CO	
Unit-I:	_			1 either or		
Synchronous Reluctance Motors	2	1 either or	2(2) – CO1	(16) – CO1	-	-
				1 either or		
Unit-II: Stepper Motors	2	1 either or	2(2) - CO2	(16) — CO2	-	-
Unit-III:				1 either or		
Switched	2	1 either or	2(2) - CO3		-	-
Reluctance				(16) – CO1		
Motors						
Unit-IV				1 either or		
Permanent	2	I either or	2(2) - CO4		-	-
Magnet				(16) – CO1		
Brushless D.C. Motors						
Unit-V: Permanent				1 either or		
Magnet	2	I either or	2(2) - CO5		-	-
Synchronous				(16) – CO1		
Motors						
	10	5 either or	10(2)	5 (10)	-	_
Total Qns.	-					
Total Marks	20	80	20	80	-	-
Weightage	20 %	80%	20%	80%	-	-
		We	eightage for (COs		
	CO1	CO2	CO3	CO4		CO5
Total Marks	20	20	20	20		20
Weightage	20%	20%	20%	20%		20%

PE22113	SOFT COMPUTING TECHNIQUES	L	Т	Р	С
		3	0	0	3
COURSE O	BJECTIVES:	•		•	
• To intro	oduce the different soft computing techniques				
• To lear	n about the design of ANN and fuzzy set theory				
	yze and implement the ANN and Fuzzy logic for modeling and control of Non-lir iliarized with the MATLAB toolbox	near	syste	em an	id to
• To solv	e optimization problems using genetic algorithms				
• To imp	art the knowledge of various optimization techniques and hybrid schemes with the	AN	FIS t	ool t	oox
UNIT I	INTRODUCTION AND ARTIFICIAL NEURAL NETWORKS				9
-Neuron- Ne network arch perceptron 1 methods- ef	domain - Discrete and continuous problems – Single objective and multi-ob- rive structure and synapse- Artificial Neuron and its model- activation fu- itecture- single layer and multilayer feed forward networks- Mc Culloch Pitt nodel- Adaline and Madaline- multilayer perception model- back prop- fect of learning rule coefficient -back propagation algorithm- factors training- applications	unct ts ne agat	ions euroi ion	- Ne n mo learr	ural del- ning
UNIT II	ARTIFICIAL NEURAL NETWORKS AND ASSOCIATIVE MEMOI	RV			9
network- Ho characteristic	pagation network- architecture- functioning & characteristics of coun opfield/ Recurrent network configuration - stability constraints associations- s- limitations and applications- Hopfield v/s Boltzman machine- Adap nitecture- classifications- Implementation and training - Associative Memory	ve i ptive	mem	ory	and
UNIT III	FUZZY LOGIC SYSTEM				9
Introduction knowledge a	to crisp sets and fuzzy sets- basic fuzzy set operation and approxi to fuzzy logic modeling and control- Fuzzification inferencing and defuz nd rule bases-Fuzzy modeling and control schemes for nonlinear systems. ontrol- Fuzzy logic control for nonlinear time delay system	zifi	catio	n-Fu	ızzy
UNIT IV	GENETIC ALGORITHM				9
Genetic Algo mechanisms problems usi	programs – Genetic algorithms, genetic programming and evolutionary prithm versus Conventional Optimization Techniques – Genetic representation Genetic operators- different types of crossover and mutation operators ng GA-discrete and continuous – Single objective and multi-objective proble ry programming.	ons :	and s Opti	selec miza	tion tion
UNIT V	HYBRID CONTROL SCHEMES				9
membership	and rule base using ANN–Neuro fuzzy systems-ANFIS – Fuzzy Neuron - function and rule base using Genetic Algorithm – Introduction to Support Programming-Particle Swarm Optimization – Case study – Familiarization	Vec	tor N	/lach	ine-

TOTAL: 45 PERIODS

COURS	COURSE OUTCOMES:						
At the e	end of the course, the students will be able to:						
CO1:	Define the basic concepts of ANN and Fuzzy logic, genetic algorithm and hybrid control schemes						
CO2:	Explain the architectures of ANN, learning methods, fuzzy sets and algorithms						
CO3:	Develop ANN and fuzzy logic-based models and control schemes for non-linear Systems						
CO4:	Examine the different operations on the fuzzy sets, artificial neural networks						
CO5:	Analyze the optimization problems in genetic algorithm and hybrid control schemes						
REFER	RENCES:						
1.	Laurene V. Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms And						
	Applications", Pearson Education.						
2.	Timothy J. Ross, "Fuzzy Logic with Engineering Applications" Wiley India, 2008.						
3.	Zimmermann H.J. "Fuzzy set theory and its Applications" Springer international edition, 2011.						
4.	David E.Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning",						
	Pearson Education, 2009.						
5.	W.T.Miller, R.S.Sutton and P.J.Webrose, "Neural Networks for Control" MIT Press", 1996.						
6.	T. Ross, "Fuzzy Logic with Engineering Applications", Tata McGraw Hill, New Delhi, 1995.						
7.	Ethem Alpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine						
	Learning Series)", MIT Press, 2004.						
8.	Corinna Cortes and V. Vapnik, "Support - Vector Networks, Machine Learning" 1995.						

Course			Progra	m Outcomes		
outcome	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	-	2	-	-
CO2	-	-	-	2	-	-
CO3	2	-	-	-	3	-
CO4	1	-	-	-	3	-
CO5	2	-	-	-	3	_
СО	1.66	-	-	2	3	-

Table of Specification for End Semester Question Paper

			Cognitive Level					
	Total 2	Total 16	Remember	Understand		oply	Analyse(An)	
Unit No. and Title	Marks	Marks	(Kn)	(Un)		$\frac{Ay}{LCO}$		
			N	o. of Qns. (ma	rks) a	nd CO		
Unit-I:				1 either or				
Introduction and		1 either or	2(2) - CO1	(16) - CO1		-	-	
Artificial Neural				× ,				
Networks								
Unit-II:								
Artificial Neural	2	1 either or	2(2) - CO2	1 either or		-	_	
Networks and			2(2) 002	(16) - CO2				
Associative								
Memory								
Unit-III: Fuzzy	2	1 either or	2(2) - CO3	1 either or		_	_	
Logic System	_		-(-) 000	(16) - CO3				
				1 either or				
Unit-IV Genetic	2	1 either or	2(2) - CO4	(16) - CO4		-	-	
Algorithm				(10) - CO4				
TT '4 X7 TT 1 1	2	1 either or	2(2) - CO5		1 eit	her or		
Unit-V: Hybrid Control Schemes		1 entitier of	2(2) - COS	-	(16)	- CO5	-	
Control Schemes	5 							
	10	5 either or	10(2)	4 either or		her or	-	
Total Qns.				(16)	(16)		
	20	80	20	64		16		
Total Marks	20	00	20	01		10		
Weightage	20 %	80%	20%	46%	1	6%	-	
	-1	We	eightage for C	COs			1	
	CO1	CO2	CO3	CO4	ŀ		CO5	
Total Marks	20	20	20	20			20	
Weightage	20%	20%	20%	20%	20%		20%	

PE22113 SOFT COMPUTING TECHNIQUES

SYSTEM THEORY

L T P C

٦

		3	0	0	3
COURSE (OBJECTIVES:				
• To ed	ucate on modeling and representing systems in state variable form				
• To tra	in on solving linear and non-linear state equations				
• To ill	ustrate the properties of control system				
• To cla	assify non-linearities and examine stability of systems in the sense of Lyapuno	v's th	eory	7	
• To ed	ucate on modal concepts, design of state, output feedback controllers and estim	nators			
UNIT I	STATE VARIABLE REPRESENTATION				9
	n-Concept of State-Space equations for Dynamic Systems -Time invariance a of state model- Physical Systems and State Assignment - free and forced			-	
UNIT II	SOLUTION OF STATE EQUATIONS				9
Linear Tim	nd uniqueness of solutions to Continuous-time state equations - Solution e Varying State equations - State transition matrix and its properties – Eva - System modes- Role of Eigen values and Eigen vectors				
UNIT III	PROPERTIES OF THE CONTROL SYSTEM				9
Controllabi	lity and Observability-Stabilizability and Detectability-Test for Continuous t	ime S	Syste	msT	ime
	lity and Observability-Stabilizability and Detectability-Test for Continuous the Time invariant case-Output Controllability-Reducibility-System Realizations	ime S	Syste	emsT	ime
varying and UNIT IV Equilibrium		Syste	ms-T	Гуре	9 s of
varying and UNIT IV Equilibrium nonlinearity Describing Continuous Autonomou	Time invariant case-Output Controllability-Reducibility-System Realizations NON-LINEARITIES AND STABILITY ANALYSIS a Points-Stability in the sense of Lyapunov-BIBO Stability-Stability of LTI Stability - Phase plane analysis – Singular points – Limit cycles – Construction of pl function method – Derivation of describing functions. Equilibrium Stability Time Autonomous Systems - Direct Method of Lyapunov and the Linear as Systems- Lyapunov Functions for Nonlinear Continuous Time Autor	Syste hase lity of Cont	ms-7 traje of N inuo	Гуре ctori lonlii us-T	9 s of es – near 'ime
varying and UNIT IV Equilibrium nonlinearity Describing Continuous Autonomou Krasovskii	Time invariant case-Output Controllability-Reducibility-System Realizations NON-LINEARITIES AND STABILITY ANALYSIS Points-Stability in the sense of Lyapunov-BIBO Stability-Stability of LTI S - Phase plane analysis – Singular points – Limit cycles – Construction of pl function method – Derivation of describing functions. Equilibrium Stabi Time Autonomous Systems - Direct Method of Lyapunov and the Linear Is Systems- Lyapunov Functions for Nonlinear Continuous Time Autor and Variable-Gradiant Method	Syste hase lity of Cont	ms-7 traje of N inuo	Гуре ctori lonlii us-T	9 s of es – near ïme ms-
varying and UNIT IV Equilibrium nonlinearity Describing Continuous Autonomou Krasovskii a UNIT V Controllable Controllable	Time invariant case-Output Controllability-Reducibility-System Realizations NON-LINEARITIES AND STABILITY ANALYSIS a Points-Stability in the sense of Lyapunov-BIBO Stability-Stability of LTI Stability - Phase plane analysis – Singular points – Limit cycles – Construction of pl function method – Derivation of describing functions. Equilibrium Stability Time Autonomous Systems - Direct Method of Lyapunov and the Linear as Systems- Lyapunov Functions for Nonlinear Continuous Time Autor	Syste hase lity o Cont homo	ms-7 traje of N inuo us S eedb	Fype ctori onlin us-T Syste	9 s of es – near Time ms- 9 on
varying and UNIT IV Equilibrium nonlinearity Describing Continuous Autonomou Krasovskii a UNIT V Controllable Controllable	Time invariant case-Output Controllability-Reducibility-System Realizations NON-LINEARITIES AND STABILITY ANALYSIS a Points-Stability in the sense of Lyapunov-BIBO Stability-Stability of LTI S a Phase plane analysis – Singular points – Limit cycles – Construction of pl function method – Derivation of describing functions. Equilibrium Stabi Time Autonomous Systems - Direct Method of Lyapunov and the Linear as Systems- Lyapunov Functions for Nonlinear Continuous Time Autor and Variable-Gradiant Method MODAL ANALYSIS e and Observable Companion Forms - SISO and MIMO Systems – Effect of St lity and Observability-Pole Placement by State Feedback for both SISO and MIMO	Syste hase lity o Cont nomo ate F IMO	ms-7 traje of N inuo us S eedb Syst	Fype ctori onlin us-T Syste ack ems	9 s of es – near Time ms- 9 on
varying and UNIT IV Equilibrium nonlinearity Describing Continuous Autonomou Krasovskii a UNIT V Controllabi Full Order a	Time invariant case-Output Controllability-Reducibility-System Realizations NON-LINEARITIES AND STABILITY ANALYSIS a Points-Stability in the sense of Lyapunov-BIBO Stability-Stability of LTI Stability - Phase plane analysis – Singular points – Limit cycles – Construction of pl function method – Derivation of describing functions. Equilibrium Stability Time Autonomous Systems - Direct Method of Lyapunov and the Linear Systems- Lyapunov Functions for Nonlinear Continuous Time Autor and Variable-Gradiant Method MODAL ANALYSIS e and Observable Companion Forms - SISO and MIMO Systems – Effect of St lity and Observability-Pole Placement by State Feedback for both SISO and M and Reduced Order Observers	Syste hase lity o Cont nomo ate F IMO	ms-7 traje of N inuo us S eedb Syst	Fype ctori onlin us-T Syste ack ems	9 s of es – near Time ms- 9 on
varying and UNIT IV Equilibrium nonlinearity Describing Continuous Autonomou Krasovskii a UNIT V Controllabit Full Order a COURSE (Time invariant case-Output Controllability-Reducibility-System Realizations NON-LINEARITIES AND STABILITY ANALYSIS a Points-Stability in the sense of Lyapunov-BIBO Stability-Stability of LTI S a Phase plane analysis – Singular points – Limit cycles – Construction of pl function method – Derivation of describing functions. Equilibrium Stabi Time Autonomous Systems - Direct Method of Lyapunov and the Linear as Systems- Lyapunov Functions for Nonlinear Continuous Time Autor and Variable-Gradiant Method MODAL ANALYSIS e and Observable Companion Forms - SISO and MIMO Systems – Effect of St lity and Observability-Pole Placement by State Feedback for both SISO and M and Reduced Order Observers	Syste hase lity o Cont nomo ate F IMO	ms-7 traje of N inuo us S eedb Syst	Fype ctori onlin us-T Syste ack ems	9 s of es – near Time ms- 9 on
varying and UNIT IV Equilibrium nonlinearity Describing Continuous Autonomou Krasovskii a UNIT V Controllabit Full Order a COURSE (Time invariant case-Output Controllability-Reducibility-System Realizations NON-LINEARITIES AND STABILITY ANALYSIS a Points-Stability in the sense of Lyapunov-BIBO Stability-Stability of LTI Stability - Phase plane analysis – Singular points – Limit cycles – Construction of pl function method – Derivation of describing functions. Equilibrium Stability Time Autonomous Systems - Direct Method of Lyapunov and the Linear Systems- Lyapunov Functions for Nonlinear Continuous Time Autor and Variable-Gradiant Method MODAL ANALYSIS e and Observable Companion Forms - SISO and MIMO Systems – Effect of St lity and Observability-Pole Placement by State Feedback for both SISO and M and Reduced Order Observers TOTA	Syste hase lity o Cont nomo ate F IMO	ms-7 traje of N inuo us S eedb Syst	Fype ctori onlin us-T Syste ack ems	9 s of es – near Time ms- 9 on
varying and UNIT IV Equilibrium nonlinearity Describing Continuous Autonomou Krasovskii a UNIT V Controllabit Full Order a COURSE (At the end	Time invariant case-Output Controllability-Reducibility-System Realizations NON-LINEARITIES AND STABILITY ANALYSIS Points-Stability in the sense of Lyapunov-BIBO Stability-Stability of LTI Sy Phase plane analysis – Singular points – Limit cycles – Construction of pl function method – Derivation of describing functions. Equilibrium Stabi Time Autonomous Systems - Direct Method of Lyapunov and the Linear Systems- Lyapunov Functions for Nonlinear Continuous Time Autor and Variable-Gradiant Method MODAL ANALYSIS e and Observable Companion Forms - SISO and MIMO Systems – Effect of St lity and Observability-Pole Placement by State Feedback for both SISO and M and Reduced Order Observers TOTA OUTCOMES:	Syste hase lity o Cont nomo ate F IMO	ms-7 traje of N inuo us S eedb Syst	Fype ctori onlin us-T Syste ack ems	9 s of es – near Time ms- 9 on
varying and UNIT IV Equilibrium nonlinearity Describing Continuous Autonomou Krasovskii a UNIT V Controllabil Full Order a COURSE O At the end CO1:	Time invariant case-Output Controllability-Reducibility-System Realizations NON-LINEARITIES AND STABILITY ANALYSIS Points-Stability in the sense of Lyapunov-BIBO Stability-Stability of LTI S Phase plane analysis – Singular points – Limit cycles – Construction of pl function method – Derivation of describing functions. Equilibrium Stabi Time Autonomous Systems - Direct Method of Lyapunov and the Linear Systems- Lyapunov Functions for Nonlinear Continuous Time Autor and Variable-Gradiant Method MODAL ANALYSIS e and Observable Companion Forms - SISO and MIMO Systems – Effect of St lity and Observability-Pole Placement by State Feedback for both SISO and M and Reduced Order Observers TOTA OUTCOMES: Of the course, the students will be able to: Understand the concept of State-State representation for dynamic systems.	Syste hase lity o Cont nomo ate F IMO	ms-7 traje of N inuo us S eedb Syst	Fype ctori onlin us-T Syste ack ems	9 s of es – near Time ms- 9 on
varying and UNIT IV Equilibrium nonlinearity Describing Continuous Autonomou Krasovskii a UNIT V Controllable Controllable Full Order a COURSE 0 At the end CO1: CO2:	Time invariant case-Output Controllability-Reducibility-System Realizations NON-LINEARITIES AND STABILITY ANALYSIS a Points-Stability in the sense of Lyapunov-BIBO Stability-Stability of LTI Stability of Derivation of describing functions. Equilibrium Stability function method – Derivation of describing functions. Equilibrium Stability Time Autonomous Systems - Direct Method of Lyapunov and the Linear is Systems- Lyapunov Functions for Nonlinear Continuous Time Autor and Variable-Gradiant Method MODAL ANALYSIS e and Observable Companion Forms - SISO and MIMO Systems – Effect of St lity and Observability-Pole Placement by State Feedback for both SISO and M and Reduced Order Observers TOTA OUTCOMES: of the course, the students will be able to: Understand the concept of State-State representation for dynamic systems. Explain the solution techniques of state equations.	Syste hase lity o Cont nomo ate F IMO	ms-7 traje of N inuo us S eedb Syst	Fype ctori onlin us-T Syste ack ems	9 s of es – near Time ms- 9 on

REFE	RENCES:
1.	M. Gopal, "Modern Control System Theory", New Age International, 2005.
2.	Z. Bubnicki, "Modern Control Theory", Springer, 2005
3.	K. Ogatta, "Modern Control Engineering", PHI, 2002
4.	John S. Bay, "Fundamentals of Linear State Space Systems", McGraw-Hill, 1999
5.	D. Roy Choudhury, "Modern Control Systems", New Age International, 2005
6.	John J. D'Azzo, C. H. Houpis and S. N. Sheldon, "Linear Control System Analysis and Design
	with MATLAB", Taylor Francis, 2003
7.	M. Vidyasagar, "Nonlinear Systems Analysis', 2nd edition, Prentice Hall, Englewood Cliffs, New
	Jersey, 2002.

Program Outcomes Course outcome PO1 PO2 PO4 PO3 PO5 PO6 CO1 3 -----CO2 3 -----CO3 3 -----CO4 2 3 ----CO5 2 3 3 2 --CO 2 3 3 2 _ -

Mapping of Course Outcomes to Program Outcomes

Table of Specification for End Semester Question Paper

PE22114 SYSTEM THEORY

				Cogniti	ve Level	
	Total 2	Total 16	Remember	Understand		Analyse(An)
Unit No. and Title	Marks	Marks	(Kn)	(Un)	(Ay)	
				o. of Qns. (ma	rks) and CO	
Unit-I: Solution	2	1 aith an an	2(2) CO1	1 either or		
of State Equations	2	1 either or	2(2) – CO1	(16) – CO1	-	-
TT				1 either or		
Unit-II:	2	1 either or	2(2) - CO2		-	-
Solution of State Equations				(16) — CO2		
Unit-III:				1 either or		
Properties of	2	1 either or	2(2) — CO3		-	-
The Control				(16) - CO3		
System						
Unit-IV Non-					1 either or	
Linearities and	2	1 either or	2(2) - CO4	-		
Stability					(16) - CO4	
Analysis						
TT - • 4 TT - D. I. I.	2	1 aith an an	2(2) CO5		1 either or	
Unit-V: Modal		1 either or	2(2) – CO5	-	(16) - CO5	-
Analysis					(10) - 003	
				3 either or	2 either or	
	10	5 either or	10(2)			-
Total Qns.				(16)	(16)	
	20	80	20	10	32	
Total Marks	20	00	20	48	52	-
Weightage	20 %	80%	20%	48%	32%	-
		We	eightage for C	COs		
	CO1	CO2	CO3	CO		CO5
Total Marks	20	20	20	20		20
Weightage	20%	20%	20%	20%		20%

	POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS	L	Т	Р	С
		3	0	0	3
COURSE O	BJECTIVES:				
-	ovide knowledge about the impacts of renewable energy power generation on ructure of renewable Energy conversion systems.	env	iron	ment	
	alyze and comprehend the mode of operation and the characteristics of solar y conversion systems.	ener	gy a	nd w	vind
-	uip with required skills to derive the criteria for the importance of solar and w r Point Tracking Techniques and hybrid systems.	vind	Max	timu	m
• To de	velop the applications of solar and wind energy conversion systems.				
	sign different power converters and apply suitable power converters for solar y conversion systems.	PV	and	wind	[
UNIT I	INTRODUCTION				9
	(cost-GHG Emission) -Qualitative study of different renewable energy resourd drogen energy systems - operating principles and characteristics of: Solar PV,				vind
electrical sys	drogen energy systems - operating principles and characteristics of: Solar PV, tems-control strategy, operating area.	, Fue	el cel	lls, w	rind
electrical sys	drogen energy systems - operating principles and characteristics of: Solar PV, tems-control strategy, operating area. ELECTRICAL MACHINES FOR WIND ENERGY CONVERSION S	, Fue SYS	el cel	lls, w	9
electrical sys UNIT II Principle of o	drogen energy systems - operating principles and characteristics of: Solar PV, tems-control strategy, operating area.	, Fue SYS	el cel	lls, w	9
electrical sys UNIT II Principle of o Wound Field	drogen energy systems - operating principles and characteristics of: Solar PV, tems-control strategy, operating area. ELECTRICAL MACHINES FOR WIND ENERGY CONVERSION Solar PV, operation and analysis: Induction Generator, Permanent Magnet Synchronous	, Fue SYS' Gen	el cel	lls, w	9
electrical sys UNIT II Principle of o Wound Field UNIT III	drogen energy systems - operating principles and characteristics of: Solar PV, tems-control strategy, operating area. ELECTRICAL MACHINES FOR WIND ENERGY CONVERSION S operation and analysis: Induction Generator, Permanent Magnet Synchronous Synchronous Generator.	, Fue SYS' Gen EM	el cel TEM erato	IIs, w I or an	9 d 9
electrical sys UNIT II Principle of o Wound Field UNIT III Block diagra buck-boost c	drogen energy systems - operating principles and characteristics of: Solar PV, tems-control strategy, operating area. ELECTRICAL MACHINES FOR WIND ENERGY CONVERSION S operation and analysis: Induction Generator, Permanent Magnet Synchronous Synchronous Generator. POWER ELECTRONICS FOR SOLAR PHOTO VOLTAIC SYSTI	, Fue SYS' Gen EM e) - I	el cel TEN erato Boos	Ils, w I or and t and	9 d 9
electrical sys UNIT II Principle of o Wound Field UNIT III Block diagra buck-boost c and grid inter	drogen energy systems - operating principles and characteristics of: Solar PV, tems-control strategy, operating area. ELECTRICAL MACHINES FOR WIND ENERGY CONVERSION S operation and analysis: Induction Generator, Permanent Magnet Synchronous Synchronous Generator. POWER ELECTRONICS FOR SOLAR PHOTO VOLTAIC SYSTI m of solar photo voltaic system : line commutated converters (inversion-mode onverters-selection of inverter, battery sizing, array sizing- standalone PV system	, Fue SYS Gen EM e) - 1	FIEN FEN erato Boos 5 - G	Ils, w I or and t and	9 d 9 l
electrical sys UNIT II Principle of o Wound Field UNIT III Block diagra buck-boost c and grid inter UNIT IV Three phase	drogen energy systems - operating principles and characteristics of: Solar PV, tems-control strategy, operating area. ELECTRICAL MACHINES FOR WIND ENERGY CONVERSION Soperation and analysis: Induction Generator, Permanent Magnet Synchronous Synchronous Generator. POWER ELECTRONICS FOR SOLAR PHOTO VOLTAIC SYSTIM of solar photo voltaic system : line commutated converters (inversion-mode converters-selection of inverter, battery sizing, array sizing- standalone PV systactive inverters- grid connection issues. POWER ELECTRONICS FOR WIND ENERGY CONVERSION SY POWER ELECTRONICS FOR WIND ENERGY CONVERSION SY AC voltage controllers-AC-DC-AC converters: uncontrolled rectifiers, PWM	, Fue SYS Gen EM e) - 1 ttems STE Inve	FIEN FEN erato Boos 5 - G	Ils, w I or and t and rid ti	9 d 9 l ied 9
electrical sys UNIT II Principle of o Wound Field UNIT III Block diagra buck-boost c and grid inter UNIT IV Three phase converters- S	drogen energy systems - operating principles and characteristics of: Solar PV, tems-control strategy, operating area. ELECTRICAL MACHINES FOR WIND ENERGY CONVERSION Soperation and analysis: Induction Generator, Permanent Magnet Synchronous Synchronous Generator. POWER ELECTRONICS FOR SOLAR PHOTO VOLTAIC SYSTEM of solar photo voltaic system : line commutated converters (inversion-mode onverters-selection of inverter, battery sizing, array sizing- standalone PV system to reactive inverters- grid connection issues. POWER ELECTRONICS FOR WIND ENERGY CONVERSION SY	, Fue SYS Gen EM e) - 1 ttems STE Inve	FIEN FEN erato Boos 5 - G	Ils, w I or and t and rid ti	9 d 9 l ied 9
electrical sys UNIT II Principle of a Wound Field UNIT III Block diagra buck-boost c and grid inter UNIT IV Three phase converters- S	drogen energy systems - operating principles and characteristics of: Solar PV, tems-control strategy, operating area. ELECTRICAL MACHINES FOR WIND ENERGY CONVERSION S operation and analysis: Induction Generator, Permanent Magnet Synchronous Synchronous Generator. POWER ELECTRONICS FOR SOLAR PHOTO VOLTAIC SYSTI m of solar photo voltaic system : line commutated converters (inversion-mode onverters-selection of inverter, battery sizing, array sizing- standalone PV system active inverters- grid connection issues. POWER ELECTRONICS FOR WIND ENERGY CONVERSION SY AC voltage controllers-AC-DC-AC converters: uncontrolled rectifiers, PWM tand alone operation of fixed and variable speed wind energy conversion system	, Fue SYS Gen EM e) - 1 ttems STE Inve	FIEN FEN erato Boos 5 - G	Ils, w I or and t and rid ti	9 d 9 l ied 9
electrical sys UNIT II Principle of o Wound Field UNIT III Block diagra buck-boost c and grid inter UNIT IV Three phase converters- S connection Is UNIT V	drogen energy systems - operating principles and characteristics of: Solar PV, tems-control strategy, operating area. ELECTRICAL MACHINES FOR WIND ENERGY CONVERSION S operation and analysis: Induction Generator, Permanent Magnet Synchronous Synchronous Generator. POWER ELECTRONICS FOR SOLAR PHOTO VOLTAIC SYSTIM of solar photo voltaic system : line commutated converters (inversion-mode onverters-selection of inverter, battery sizing, array sizing- standalone PV systactive inverters- grid connection issues. POWER ELECTRONICS FOR WIND ENERGY CONVERSION SY AC voltage controllers-AC-DC-AC converters: uncontrolled rectifiers, PWM tand alone operation of fixed and variable speed wind energy conversion syst sues -Grid integrated PMSG based WECS. HYBRID RENEWABLE ENERGY SYSTEMS prid Systems -Range and type of Hybrid systems-Case studies of Wind-PV M	, Fue SYS Gen EM e) - 1 tems STE Inve ems	FIEN FEN erato Boos 5 - G Enters - Gri	Ils, w I or and t and rid ti s, ma	9 d 1 eed 9 ttrix

COURSE OUTCOMES:

At the	end of the course, the students will be able to:
C01	: Explain the impacts of renewable energy power generation on environment and the structure
	of renewable Energy conversion systems.
CO2	Apply the mode of operation of machines and the characteristics of wind energy conversion systems.
CO3	: Explain the importance of power converters in solar photovoltaic systems.
CO4	: Explain the importance of power converters in wind energy conversion systems.
CO5	: Analyse Maximum Power Point Tracking method of hybrid wind energy conversion systems.
REFE	RENCES:
1.	S. N. Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Systems", Oxford University Press, 2005.
2.	B.H.Khan, "Non-conventional Energy sources", Tata McGraw-hill Publishing Company, New
	Delhi, 2009.
3.	M.Godoy Simoez, Felix A Farret, "Modeling and Analysis with Induction Generators", CRC Press,
	Taylor & Francis Group, 2015.
4.	Rashid .M. H "Power Electronics Hand book", Academic press, 2001.
5.	Rai. G.D," Solar energy utilization", Khanna publishers, 1993.
6.	R.Seyezhai and R.Ramaprabha, "Power Electronics for Renewable Energy Systems", Scitech
	Publication,2019.
7.	Gray, L. Johnson, "Wind energy system", PHI, 1995.
8.	P.S.Bimbhra, "Power Electronics", Khanna Publishers, 3rd Edition, 2003.
9.	Fang Lin Luo Hong Ye, "Renewable Energy systems", Taylor & Francis Group,2013.
10.	Andrzej M. Trzynnadlowski, 'Introduction to Modern Power Electronics', Second edition, wiley

Course	Program Outcomes								
outcome	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	-	2	2	2			
CO2	2	-	-	2	2	2			
CO3	2	-	-	2	2	2			
CO4	2	-	-	2	2	2			
CO5	2	-	-	2	2	2			
СО	2	-	-	2	2	2			

PE22221 POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEM

				Cognitiv	ve Level	
	Total 2	Total 16	Remember	Understand	Apply	Analyse(An)
Unit No. and Title	Marks	Marks	(Kn)	(Un)	(Ay)	
			N	o. of Qns. (ma	rks) and CC)
Unit-I: Introduction	2	1 either or	2(2) – CO1	1 either or (16) – CO1	-	-
Unit-II: Electrical Machines for Wind Energy Conversion System	2	1 either or	2(2) - CO2	-	1 either or (16) – CO2	-
Unit-III: Power				1 either or		
Electronics for	2	1 either or	2(2) — CO3		-	-
Solar Photo				(16) — CO3		
Voltaic System						
Unit IV- Power Electronics for Wind Energy Conversion System	2	1 either or	2(2) - CO4	1 either or (16) – CO4	-	-
Unit-V: Hybrid						1 either or
Renewable Energy Systems	2	1 either or	2(2) – CO5		-	(16) – CO5
				5 either or		
Total Qns.	10	5 either or	10(2)	(16)	-	-
Total Marks	20	80	20	48	16	16
Weightage	20 %	80%	20%	48%	16%	16%
			eightage for C			
	CO1	<u>CO2</u>	<u>CO3</u>	CO4	4	<u>CO5</u>
Total Marks	20	20	20	20		$\frac{20}{200}$
Weightage	20%	20%	20%	20%)	20%

PE22222	PWM RECTIFIERS AND RESONANT CONVERTERS	L	Т	Р	C
		3	0	0	3
COURSE OF	JECTIVES:				1
• To incu	cate knowledge on harmonics standards				
To impa	rt knowledge on the design power factor correction rectifiers for UPS appli	catic	ons		
• To fami	liarize the design resonant converters for SMPS applications				
To prov	ide knowledge on dynamic analysis of DC to DC Converters				
• To intro	duce the control techniques for control of resonant converters				
UNIT I	POWER SYSTEM HARMONICS & LINE COMMUTATED RECT	FIFI	ERS	5	9
Average pow	er-RMS value of an AC waveform-Power factor-AC line current harmon	ic st	anda	ards	IEC
	19- The Single phase full wave rectifier-Continuous Conduction Mode				
	lode-Single phase Rectifier's behavior for large value of Capacitance -Min	imiz	ing '	THD	for
small value of	Capacitance				1
UNIT II	PULSE WIDTH MODULATED RECTIFIERS				9
Properties of 1	deal rectifiers-Realization of non-ideal rectifier-Single phase converter syst	em			
In corporating	g ideal rectifiers-Modelling losses and efficiency in CCM - high quality	rec	tifie	rs-B	oost
rectifier-expre	ssion for controller duty cycle-expression for DC load current.				
UNIT III	RESONANT CONVERTERS				9
Review on Pa	rallel and Series Resonant Switches-Soft Switching- Zero Current Switchin	g - Z	lero		L
Voltage Swit	ching -Classification of Quasi resonant switches-Zero Current and Zero Vol	tage			
Switching of	Quasi Resonant Buck converter- Zero Current and Zero Voltage Swit	itchi	ng c	of Q	uasi
Resonant Boo	st converter: Steady State analysis.				
UNIT IV	DYNAMIC ANALYSIS OF SWITCHING CONVERTERS				9
Review of lin	ear system analysis-State Space Averaging-Basic State Space Average Me	odel-	- Sta	te Sj	pace
Averaged mo	lel for Buck Converter, Boost Converter, Buck Boost Converter and Cuk Co	onve	rter.		
UNIT V	CONTROL OF PWM RECTIFIERS				9
Pulse Width N	Iodulation-Voltage Mode PWM Scheme-Current Mode PWM Scheme- Av	erag	e		1
current contro	ol-Current programmed Control- Hysteresis control- Nonlinear carrier co	ntro	l –D	esig	n of
	I Controller, Variable Structure Controller for source current shaping of PW			-	
	ΤΟΤΑ	L: 4	5 PF	ERIC	DDS
COURSE OU		L: 4	5 PF	ERIC	DS
COURSE OU		L: 4	5 PF	ERIC	DDS

CO2.	Design newson factor connection nextificant for LIDC applications							
CO2:	Design power factor correction rectifiers for UPS applications							
CO3:	Analyze and design the resonant converters							
CO4:	Derive the state space model of basic and derived DC-DC converters							
CO5:	Design an appropriate controller for PWM rectifiers							
REFER	RENCES:							
1.	John G. Kassakian, Martin F. Schlecht, George C. Verghese, "Principles of Power							
	Electronics", Pearson, India, New Delhi, 2010							
2.	Philip T Krein, "Elements of Power Electronics", Oxford University Press, 1998							
3.	Ned Mohan, "Power Electronics: A first course", John Wiley,2011							
4.	IssaBatarseh, Ahmad Harb, "Power Electronics- Circuit Analysis and Design, Second							
	edition,2018							
5.	Simon Ang and Alejandro Oliva, "Power Switching Converters", Taylor & Francis Group,							
	2010.							

Course	Program Outcomes								
outcome	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	-	2	-	-			
CO2	-	-	-	2	-	-			
CO3	-	-	-	2	-	1			
CO4	1	-	-	2	1	1			
CO5	1	-	-	2	1	-			
СО	1	_	-	2	1	1			

				Cognitiv	e Level			
	Total 2	Total 16	Remember	Understand	Apply	Analyse(An)		
Unit No. and Title	e Marks	Marks	(Kn)	(Un)	(Ay)			
			No. of Qns. (marks) and CO					
Unit-I: Power								
System				1 either or				
Harmonics &	2	1 either or	2(2) – CO1	(16) – CO1	-	-		
Line Commutated								
Rectifiers								
Unit-II: Pulse				1 either or				
Width	2	1 either or	2(2) - CO2	(16) CO2	-	-		
Modulated				(16) – CO2				
Rectifiers				1 either or				
Unit-III:	2	1 either or	2(2) — CO3		-	-		
Resonant Converters				(16) — CO3				
Unit IV- Dynami	c 2	1 either or	2(2) - CO4	1 either or				
Analysis of Switching	2	1 entitier or	2(2) - CO4	(16) – CO4	-	-		
Converters								
Unit-V: Control	_			1 either or				
of PWM	2	1 either or	2(2) - CO5		-	-		
Rectifiers				(16) – CO5				
				5 either or				
Total Qns.	10	5 either or	10(2)	(16)	-	-		
rotar Ano.								
Total Marks	20	80	20	80	-	-		
Weightage	20 %	80%	20%	80%	-	-		
	1	U N	eightage for C	۱ ۲ Ω s		I		
	CO1	CO2	CO3	CO4		CO5		
Total Marks	20	20	20	20		20		
Weightage	20%	20%	20%	20%		20%		

PE22222 PWM RECTIFIERS AND RESONANT CONVERTERS

	VOLTAGE LIFT CONVERTERS	L	Т	Р	С
		3	0	0	3
COURSE	OBJECTIVES:				
• To s	tudy the operation of voltage lift circuits				
• To i	mpart knowledge on the working of super lift circuits				
	earn the operation of ultra-lift converters and multiple quadrant converters				
-	provide knowledge on the principle of bidirectional dual active bridge converte	ers			
• To e	ducate on the working principle of Impedance source converter				1
UNIT I	VOLTAGE-LIFT CONVERTERS				9
	on- Self-lift and reverse self-lift circuits- Cuk converter, Luo converter and SE continuous and discontinuous conduction modeApplications	PIC			
UNIT II	POSITIVE OUTPUT &NEGATIVE OUTPUT SU LUOCONVERTERS	U PE I	R-LI	(FT	9
	es, -Elementary Circuit, Re-Lift Circuit, Triple-Lift Circuit, Higher-Order Lift	Circ	uit		
	us and discontinuous conduction modes- Applications ULTRA LIFT CONVERTERS AND MULTIPLE-QUADRANT				
UNIT III	OPERATING LUO-CONVERTERS				9
Luo-Conv	Luo- Converter- Operation - Continuous and discontinuous conduction Me erter-Instantaneous Values- Multiple quadrant operating Luo Converters- Circ				
Modes of	operation- Applications		1		
Modes of UNIT IV	BIDIRECTIONAL DUAL ACTIVE BRIDGE DC-DC CONVERTER	RS	1		9
UNIT IV Application Working mode con		-DC orma	Con nce-	nvert Vol	9 er - tage
UNIT IV Application Working mode con	BIDIRECTIONAL DUAL ACTIVE BRIDGE DC–DC CONVERTER on of Bidirectional DC–DC Converter-Classification of Bidirectional DC- Principle of Hybrid-Bridge-Based Dual active bridge (DAB) converter- Perfectorel- trol- Principle of Dual-Transformer based DAB converter- Three-Level bidi	-DC orma	Con nce-	nvert Vol	9 er - tage
UNIT IV Application Working mode cont converter UNIT V Voltage- inverter -	BIDIRECTIONAL DUAL ACTIVE BRIDGE DC–DC CONVERTER on of Bidirectional DC–DC Converter-Classification of Bidirectional DC- Principle of Hybrid-Bridge-Based Dual active bridge (DAB) converter- Perfector- trol- Principle of Dual-Transformer based DAB converter- Three-Level bidi Applications	-DC orma rectiv	Connce- onal	vert Vol DC-	9 er - tage -DC 9
UNIT IV Application Working mode cont converter UNIT V Voltage- inverter -	BIDIRECTIONAL DUAL ACTIVE BRIDGE DC–DC CONVERTER on of Bidirectional DC–DC Converter-Classification of Bidirectional DC-Principle of Hybrid-Bridge-Based Dual active bridge (DAB) converter- Performance trol- Principle of Dual-Transformer based DAB converter- Three-Level bidi Applications IMPEDANCE SOURCE CONVERTER Fed Z- source inverters -Topologies –Steady state and dynamic model- Cu Copology -Modification and operational principles. Modulation Methods- Sine	-DC orma rection	Con nce- onal fed	Vol DC- Zsor	9 er - tage -DC 9 urce
UNIT IV Application Working mode cont converter UNIT V Voltage- inverter - PWM- SV	BIDIRECTIONAL DUAL ACTIVE BRIDGE DC-DC CONVERTER on of Bidirectional DC-DC Converter-Classification of Bidirectional DC-Principle of Hybrid-Bridge-Based Dual active bridge (DAB) converter- Perfector-Principle of Dual-Transformer based DAB converter- Three-Level bidi Applications IMPEDANCE SOURCE CONVERTER Fed Z- source inverters -Topologies –Steady state and dynamic model- Cu Copology -Modification and operational principles. Modulation Methods- Sine /PWM and Pulse width Amplitude Modulation- Applications	-DC orma rection	Con nce- onal fed	Vol DC- Zsor	9 er - tage -DC 9 urce
UNIT IV Application Working mode cont converter UNIT V Voltage- inverter - PWM- SV COURSE	BIDIRECTIONAL DUAL ACTIVE BRIDGE DC-DC CONVERTER on of Bidirectional DC-DC Converter-Classification of Bidirectional DC-Principle of Hybrid-Bridge-Based Dual active bridge (DAB) converter- Performance trol-Principle of Dual-Transformer based DAB converter- Three-Level bidi Applications IMPEDANCE SOURCE CONVERTER Fed Z- source inverters -Topologies –Steady state and dynamic model- Cu Copology -Modification and operational principles. Modulation Methods- Sine VPWM and Pulse width Amplitude Modulation- Applications TOTA	-DC orma rection	Con nce- onal fed	Vol DC- Zsor	9 er - tage -DC 9 urce
UNIT IV Application Working mode cont converter UNIT V Voltage- inverter - PWM- SV COURSE	BIDIRECTIONAL DUAL ACTIVE BRIDGE DC-DC CONVERTER on of Bidirectional DC-DC Converter-Classification of Bidirectional DC-Principle of Hybrid-Bridge-Based Dual active bridge (DAB) converter- Perfector-Principle of Dual-Transformer based DAB converter- Three-Level bidi Applications IMPEDANCE SOURCE CONVERTER Fed Z- source inverters -Topologies –Steady state and dynamic model- Cu Copology -Modification and operational principles. Modulation Methods- Sine PWM and Pulse width Amplitude Modulation- Applications TOTA COUTCOMES:	-DC orma rection	Con nce- onal fed	Vol DC- Zsor	9 er - tage -DC 9 urce
UNIT IV Application Working mode cont converter UNIT V Voltage- inverter - PWM- SV COURSE At the en	BIDIRECTIONAL DUAL ACTIVE BRIDGE DC-DC CONVERTER on of Bidirectional DC-DC Converter-Classification of Bidirectional DC-Principle of Hybrid-Bridge-Based Dual active bridge (DAB) converter- Perfector-Principle of Dual-Transformer based DAB converter- Three-Level bidi Applications IMPEDANCE SOURCE CONVERTER Fed Z- source inverters -Topologies –Steady state and dynamic model- Cu Copology -Modification and operational principles. Modulation Methods- Sine VPWM and Pulse width Amplitude Modulation- Applications TOTA OUTCOMES: d of the course, the students will be able to:	-DC orma rection	Con nce- onal fed	Vol DC- Zsor	9 er - tage -DC 9 urce
UNIT IV Application Working mode cont converter UNIT V Voltage- inverter - PWM- SV COURSE At the en CO1:	BIDIRECTIONAL DUAL ACTIVE BRIDGE DC-DC CONVERTER on of Bidirectional DC-DC Converter-Classification of Bidirectional DC-Principle of Hybrid-Bridge-Based Dual active bridge (DAB) converter- Perfector-Principle of Dual-Transformer based DAB converter- Three-Level bidi Applications IMPEDANCE SOURCE CONVERTER Fed Z- source inverters -Topologies –Steady state and dynamic model- Cu Topology -Modification and operational principles. Modulation Methods- Sine /PWM and Pulse width Amplitude Modulation- Applications TOTA COUTCOMES: d of the course, the students will be able to: Understand the working of voltage lift circuits	-DC orma rection	Con nce- onal fed	Vol DC- Zsor	9 er - tage -DC 9 urce
UNIT IV Applicatio Working mode con converter UNIT V Voltage- inverter - PWM- SV COURSE At the en CO1: CO2:	BIDIRECTIONAL DUAL ACTIVE BRIDGE DC-DC CONVERTER on of Bidirectional DC-DC Converter-Classification of Bidirectional DC-Principle of Hybrid-Bridge-Based Dual active bridge (DAB) converter- Performance trol- Principle of Dual-Transformer based DAB converter- Three-Level bidi Applications IMPEDANCE SOURCE CONVERTER Fed Z- source inverters -Topologies –Steady state and dynamic model- Cu Copology -Modification and operational principles. Modulation Methods- Sine VPWM and Pulse width Amplitude Modulation- Applications TOTA C OUTCOMES: d of the course, the students will be able to: Understand the working of voltage lift circuits Design the super lift converters	-DC orma rection rrent	Con nce- onal fed	Vol DC- Zsor	9 er - tage -DC 9 urce

REFE	RENCES:
1.	Fang Lin Luo, Hong Ye "Advanced DC/DC Converters", Second Edition, CRC press, 2018
2.	Yushan Liu, Haitham Abu- Rub, BaomingGe, Dr. FredeBlaabjerg, Omar Ellabban, Poh
	Chiang Loh, "Impedance source power electronic converters", Wiley IEEE Press, 2016
3.	DeshangSha,GuoXu, "High-Frequency Isolated Bidirectional Dual Active Bridge DC-DC
	Converters with Wide Voltage Gain", Springer 2019
4.	Fang Lin Luo, Hong Ye, "Essential DC/DC Converters", First Edition, CRC,2005
5.	Fang Lin Luo, Hong Ye, "Power Electronics Advanced Conversion Technologies", Second
	Edition, 2018 CRC press.

Course	Program Outcomes							
outcome	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	3	2	1		
CO2	1	1	1	3	2	1		
CO3	1	1	1	3	2	1		
CO4	1	1	1	3	2	1		
CO5	1	1	1	3	2	1		
СО	1	1	1	3	2	1		

		T (1	Cognitive Level					
	Total 2	Total 16	Remember	Understand	Apply	Analyse(An)		
Unit No. and Title	Marks	Mar	(Kn)	(Un)	(Ay)			
		ks	No. of Qns. (marks) and CO					
				1 either or				
Unit-I: Voltage-	2	1 either or	2(2) - CO1		-	-		
Lift Converters				(16) – CO1				
Unit-II: Positive				1 either or				
Output &Negativ		1 either or	2(2) - CO2		-	-		
Output Super-Li	ft			(16) – CO2				
Luoconverters								
Unit-III: Ultra L				1 either or				
	nd t 2	1 either or	2(2) — CO3	1 entiter of	_	_		
Multiple-Quadran	t			(16) — CO3				
Operating Luo-								
Converters								
UnitIV-				1 either or				
Bidirectional Du		1 either or	2(2) - CO4	(16) CO4	-	-		
Active Bridge DO DC Converters	;			(16) – CO4				
DC Converters				1 either or				
Unit-V: Impedan	e 2	1 either or	2(2) - CO5	1 entiter of	_	_		
Source Converte			_(_) = = =	(16) – CO5				
				5 .: (1 .				
	10	5 either	10(2)	5 either or	_	_		
Total Qns.	10	or	10(2)	(16)	-	_		
	20	00	20	80				
Total Marks	20	80	20	80	-	-		
Weightage	20 %	80%	20%	80%	-	-		
		We	eightage for C	COs				
	CO1	CO2	CO3	CO4		CO5		
Total Marks	20	20	20	20		20		
Weightage	20%	20%	20%	20%		20%		

PE22223 VOLTAGE LIFT CONVERTERS

	CONTROL OF POWER ELECTRONIC CIRCUITS	L	Т	Р	С
		3	0	0	3
COURSE ()BJECTIVES:				
To inc	ulcate knowledge on the basics of control for power electronic circuits				
To illu	strate the concepts of feedback controllers for DC-DC converters				
• To lea	rn about the controller design for AC-DC converter circuits				
• To lea	rn about the controller design for DC-AC converter circuits				
• To im	part knowledge on sliding mode control				
UNIT I	INTRODUCTION TO CONTROLLER DESIGN				9
Introduction	, Review of Linear Control Theory, Linearization of Various Transfer	Func	ction	Blo	cks,
Feedback C Design in D	ontroller Design in Voltage-Mode Control, Peak-Current Mode Control, Fea CM	edba	ck C	ontro	oller
UNIT II	CONTROLLER DESIGN FOR DC-DC CONVERTERS				9
Introduction	, Linear Feedback Control- Pole Placement by Full State Feedback, Pole Pla	acem	ent l	Based	d on
Observer D	esign, Reduced Order Observers, Generalized Proportional Integral Contro	llers	- Ap	plica	tion
to power co	nverters				
UNIT III	CONTROLLER DESIGN FOR AC-DC CONVERTER CIRCUITS				9
Introduction	, Operating Principle of Single-Phase PFCs, Control of PFCs, Designing th	ne In	ner A	Avera	age-
Current-Cou					-0-
Current Col	trol Loop, Designing the Outer Voltage-Control Loop, Example of S	lingle			-
Systems	trol Loop, Designing the Outer Voltage-Control Loop, Example of S	lingle			-
	trol Loop, Designing the Outer Voltage-Control Loop, Example of S	bingle			-
Systems UNIT IV	CONTROLLER DESIGN FOR DC-AC CONVERTER CIRCUITS		e-Pha	ase]	PFC 9
Systems UNIT IV Introduction			e-Pha	ase]	PFC 9
Systems UNIT IV Introduction Inverters, C	CONTROLLER DESIGN FOR DC-AC CONVERTER CIRCUITS , Synthesis of Low-Frequency AC, Single-Phase Inverters, Three-Phase Inverters for Bi-Directional Power Flow, Matrix Converters		e-Pha	ase]	PFC 9 evel
Systems UNIT IV Introduction Inverters, C UNIT V	CONTROLLER DESIGN FOR DC-AC CONVERTER CIRCUITS , Synthesis of Low-Frequency AC, Single-Phase Inverters, Three-Phase Inverters for Bi-Directional Power Flow, Matrix Converters SLIDING MODE CONTROL	verte	e-Pha	ase] Iultil	9 evel 9
Systems UNIT IV Introduction Inverters, C UNIT V Introduction	CONTROLLER DESIGN FOR DC-AC CONVERTER CIRCUITS , Synthesis of Low-Frequency AC, Single-Phase Inverters, Three-Phase Inverters for Bi-Directional Power Flow, Matrix Converters	verter	e-Pha	ase] Iultile	9 evel 9 ces,
Systems UNIT IV Introduction Inverters, C UNIT V Introduction	CONTROLLER DESIGN FOR DC-AC CONVERTER CIRCUITS , Synthesis of Low-Frequency AC, Single-Phase Inverters, Three-Phase Inverters for Bi-Directional Power Flow, Matrix Converters SLIDING MODE CONTROL , Variable Structure Systems, Control of Single Switch Regulated Systems, Control and the Ideal Sliding Dynamics, Accessibility of the Sliding Surface	verter	e-Pha	ase] Iultile	9 evel 9 ces,
Systems UNIT IV Introduction Inverters, C UNIT V Introduction Equivalent	CONTROLLER DESIGN FOR DC-AC CONVERTER CIRCUITS , Synthesis of Low-Frequency AC, Single-Phase Inverters, Three-Phase Inverters for Bi-Directional Power Flow, Matrix Converters SLIDING MODE CONTROL , Variable Structure Systems, Control of Single Switch Regulated Systems, Control and the Ideal Sliding Dynamics, Accessibility of the Sliding Surface erters	Slid e - A	e-Phars, M	ase 1 Iultil	9 evel 9 cces, n to
Systems UNIT IV Introduction Inverters, C UNIT V Introduction Equivalent power conve	CONTROLLER DESIGN FOR DC-AC CONVERTER CIRCUITS , Synthesis of Low-Frequency AC, Single-Phase Inverters, Three-Phase Inverters for Bi-Directional Power Flow, Matrix Converters SLIDING MODE CONTROL , Variable Structure Systems, Control of Single Switch Regulated Systems, Control and the Ideal Sliding Dynamics, Accessibility of the Sliding Surface	Slid e - A	e-Phars, M	ase 1 Iultil	9 evel 9 cces, n to
Systems UNIT IV Introduction Inverters, C UNIT V Introduction Equivalent power converted COURSE (CONTROLLER DESIGN FOR DC-AC CONVERTER CIRCUITS , Synthesis of Low-Frequency AC, Single-Phase Inverters, Three-Phase Inverters for Bi-Directional Power Flow, Matrix Converters SLIDING MODE CONTROL , Variable Structure Systems, Control of Single Switch Regulated Systems, Control and the Ideal Sliding Dynamics, Accessibility of the Sliding Surface erters TOTA	Slid e - A	e-Phars, M	ase 1 Iultil	9 evel 9 cces, n to
Systems UNIT IV Introduction Inverters, C UNIT V Introduction Equivalent power convert COURSE C At the end	CONTROLLER DESIGN FOR DC-AC CONVERTER CIRCUITS , Synthesis of Low-Frequency AC, Single-Phase Inverters, Three-Phase Inverters for Bi-Directional Power Flow, Matrix Converters SLIDING MODE CONTROL , Variable Structure Systems, Control of Single Switch Regulated Systems, Control and the Ideal Sliding Dynamics, Accessibility of the Sliding Surface erters TOTA	Slid e - A	e-Phars, M	ase 1 Iultil	9 evel 9 cces, n to
Systems UNIT IV Introduction Inverters, C UNIT V Introduction Equivalent power conv COURSE C At the end CO1:	CONTROLLER DESIGN FOR DC-AC CONVERTER CIRCUITS , Synthesis of Low-Frequency AC, Single-Phase Inverters, Three-Phase Inverters for Bi-Directional Power Flow, Matrix Converters SLIDING MODE CONTROL , Variable Structure Systems, Control of Single Switch Regulated Systems, Control and the Ideal Sliding Dynamics, Accessibility of the Sliding Surface erters TOTA DUTCOMES: of the course, the students will be able to:	Slid e - A	e-Phars, M	ase 1 Iultil	9 evel 9 cces, n to
Systems UNIT IV Introduction Inverters, C UNIT V Introduction Equivalent power conv COURSE C At the end CO1: E CO2: E	CONTROLLER DESIGN FOR DC-AC CONVERTER CIRCUITS , Synthesis of Low-Frequency AC, Single-Phase Inverters, Three-Phase Inverters for Bi-Directional Power Flow, Matrix Converters SLIDING MODE CONTROL , Variable Structure Systems, Control of Single Switch Regulated Systems, Control and the Ideal Sliding Dynamics, Accessibility of the Sliding Surface erters TOTA DUTCOMES: of the course, the students will be able to: Explain the basics of control for power electronic circuits	Slid e - A	e-Pha rs, M ing S Appli 5 PH	ase 1 Iultile Surfa catio	9 evel 9 cces, n to
Systems UNIT IV Introduction Inverters, C UNIT V Introduction Equivalent power conv COURSE COURSE CO1: E CO2: E CO3: E C03: E C	CONTROLLER DESIGN FOR DC-AC CONVERTER CIRCUITS , Synthesis of Low-Frequency AC, Single-Phase Inverters, Three-Phase Inverters for Bi-Directional Power Flow, Matrix Converters SLIDING MODE CONTROL , Variable Structure Systems, Control of Single Switch Regulated Systems, Control and the Ideal Sliding Dynamics, Accessibility of the Sliding Surface erters TOTA DUTCOMES: Dof the course, the students will be able to: Explain the basics of control for power electronic circuits Describe the concepts of feedback controllers for DC-DC converters	Slid e - A	e-Pha rs, M ing S Appli 5 PH	ase 1 Iultile Surfa catio	9 evel 9 cces, n to
Systems UNIT IV Introduction Inverters, C UNIT V Introduction Equivalent power conv COURSE COURSE CO1: E CO2: I CO3: I CO3: I CO4: I	CONTROLLER DESIGN FOR DC-AC CONVERTER CIRCUITS , Synthesis of Low-Frequency AC, Single-Phase Inverters, Three-Phase Inverters for Bi-Directional Power Flow, Matrix Converters SLIDING MODE CONTROL , Variable Structure Systems, Control of Single Switch Regulated Systems, Control and the Ideal Sliding Dynamics, Accessibility of the Sliding Surface erters TOTA DUTCOMES: Dof the course, the students will be able to: Explain the basics of control for power electronic circuits Describe the concepts of feedback controllers for DC-DC converters	Slid e - A	e-Pha rs, M ing S Appli 5 PH	ase 1 Iultile Surfa catio	9 evel 9 cces, n to

REFE	RENCES:
1.	Hebertt Sira-Ramírez and Ramón Silva-Ortigoza,"Control Design Techniques in Power
	Electronics Devices " Springer-Verlag London Limited 2006
2.	Ned Mohan,"Power Electronics: A First Course", Johnwiley, 2011
3.	Marian K. Kazimierczuk and Agasthya Ayachit,"Laboratory Manual for Pulse-Width Modulated
	DC- DC Power Converters", Wiley 2016
4.	Farzin Asadi and Kei Eguchi, Morgan &Claypool", Dynamics and Control of DC-DC
	Converters", 2018
5	Andre Kislovski, "Dynamic Analysis of Switching-Mode DC/DC Converters", Springer 1991
6	Azar, Ahmad Taher, Zhu, Quannmin," Advances and Applications in sliding mode control systems", Springer, 2015

Course	Program Outcomes								
outcome	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	2	2	2	-			
CO2	3	-	2	2	2	-			
CO3	3	-	2	2	2	2			
CO4	3	-	2	2	2	2			
CO5	3	-	2	2	2	2			
СО	3	_	2	2	2	2			

PE22224 CONTROL OF POWER ELECTRONIC CIRCUITS

			Cognitive Level						
TL-:4 NL J T:41-	Total 2	Total 16	Remember	Understand	Apply	Analyse(An)			
Unit No. and Title	Marks	Marks	(Kn) (Un) (Ay) No. of Qns. (marks) and CO						
Unit-I:				1 either or					
Introduction to Controller Design	2	1 either or	2(2) – CO1	(16) – CO1	-	-			
Unit-II:	2	1 aith an an	2(2) CO2	1 either or					
Controller Design for DC- DC Converters	2	1 either or	2(2) - CO2	(16) – CO2	-	-			
Unit-III: Controller				1 either or					
Design for AC- DC Converter Circuits	2	1 either or	2(2) — CO3	(16) — CO3	-	-			
Unit IV- Controller	2	1 either or	2(2) - CO4	1 either or					
Design For DC- AC Converter Circuits	2	1 entiter of	2(2) - 004	(16) – CO4	-	-			
Unit-V Sliding	2	1 either or	2(2) – CO5	1 either or	-	_			
Mode Control	_		_(_) 000	(16) – CO5					
	10	5 either or	10(2)	5 either or					
Total Qns.	10	J entiter of	10(2)	(16)	-	-			
Total Marks	20	80	20	80	-	-			
Weightage	20 %	80%	20%	80%	-	-			
		We	eightage for C	COs					
	CO1	CO2	CO3	CO4		CO5			
Total Marks	20	20	20	20		20			
Weightage	20%	20%	20%	20%		20%			

Introduction – Characterisation of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation, Power acceptability curves – power quality problems: poor load power factor, Non- linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards. UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three phase Balance system – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three phase four wire system 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : 9 Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9	PE22231	POWER QUALITY	L	Т	Р	C
To understand the basic terms and power quality issues. To analyse single phase and three phase systems . To understand the importance of conventional load compensation systems. To understand the load compensation problem using DSTATCOM. To understand the series compensation of power distribution systems. UNT I INTRODUCTION 9 Introduction – Characterisation of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power acceptability curves – power quality problems: poor load power factor, Non- linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards. UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three phase Balance system – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three phase for wire system UNIT III CONVENTIONAL LOADCOMPENSATION METHODS 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure-voltage Restoration – Series Active Filter – Unified Power Quality Conditioner			3	0	0	3
To analyse single phase and three phase systems . To understand the importance of conventional load compensation systems. To understand the load compensation problem using DSTATCOM. To understand the series compensation of power distribution systems. INTRODUCTION 9 INTRODUCTION 9 INTRODUCTION 9 Introduction – Characterisation of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation, Power acceptability curves – power quality problems: poor load power factor, Non- linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards. UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three phase Balance system – Three phase unbalanced system – Three phase unbalance and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three phase four wire system UNIT II CONVENTIONAL LOADCOMPENSATION METHODS 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : Open loop balancing - Closed loop balancing, Current balancing – Harmonic reduction and voltage seg reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure- voltage Restoration – Series Active Filter – Unified Power Quality Conditioner	COURSE O	BJECTIVES:				
 To understand the importance of conventional load compensation systems. To understand the load compensation problem using DSTATCOM. To understand the series compensation of power distribution systems. UNIT I INTRODUCTION 9 INTRODUCTION 9 Introduction – Characterisation of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation, Power acceptability curves – power quality problems: poor load power factor, Non- linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards. UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three phase Balance system – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three phase torrwive system UNIT II CONVENTIONAL LOADCOMPENSATION METHODS 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure-voltage Restoration – Series Active Filter – Unified Power Quality Conditioner<td>• To und</td><td>lerstand the basic terms and power quality issues.</td><td></td><td></td><td></td><td></td>	• To und	lerstand the basic terms and power quality issues.				
 To understand the load compensation problem using DTATCOM. To understand the series compensation of power distribution systems. UNIT I INTRODUCTION 9 Introduction – Characterisation of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation, Power acceptability curves – power quality problems: poor load power factor, Non- linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards. UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three phase balance system – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three phase balance and unor sinusoidal source supplying load balancing problem : Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure-voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 	• To ana	lyse single phase and three phase systems.				
To understand the series compensation of power distribution systems. INTRODUCTION INTRODUCTIONAL LOADCOMPENSATION METHODS INTRODUCTIONAL LOADCOMPENSATION METHODS INTRODUCTIONAL LOADCOMPENSATION METHODS INTRODUCTIONAL LOADCOMPENSATION METHODS INTRODUCTION AND VOItage regulation – Classical load balancing problem : Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. UNIT IV LOAD COMPENSATION USING DSTATCOM INTAL: INTACOMPENSATION OF POWER DISTRIBUTION SYSTEM INTRODUCTION METHODS INTAL: SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM INTRODUCTIONAL VOItage Restorer – DC Capacitor supported DVR – DVR Structure- voltage centrol mode UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM INTRODUCTIONAL VOItage Restorer – DC Capacitor supported DVR – DVR Structure- voltage Restoration – Series Active Filter – Unified Power Quality Conditioner	• To und	lerstand the importance of conventional load compensation systems.				
INTRODUCTION 9 Introduction – Characterisation of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation, Power acceptability curves – power quality problems: poor load power factor, Non- linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards. 9 UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three phase Balance system – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three phase four wire system 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure-voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9	• To und	lerstand the load compensation problem using DSTATCOM.				
Introduction – Characterisation of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation, Power acceptability curves – power quality problems: poor load power factor, Non- linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards. 9 UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three phase balance system – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three phase for wire system 9 UNIT III CONVENTIONAL LOADCOMPENSATION METHODS 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : 9 Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure-voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9	• To und	lerstand the series compensation of power distribution systems.				
duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation, Power acceptability curves – power quality problems: poor load power factor, Non- linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards. UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three 9 phase Balance system – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three phase four wire system UNIT II CONVENTIONAL LOADCOMPENSATION METHODS 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : 9 Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure-voltage Restorer – DC Capacitor supported DVR – DVR Structure-voltage Restorer – DC Capacitor supported DVR – DVR Structure-voltage Re	UNIT I	INTRODUCTION				9
Power frequency variation, Power acceptability curves – power quality problems: poor load power factor, Non- linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards. UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three phase four wire system 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure– voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9	Introduction	- Characterisation of Electric Power Quality: Transients, short duration and	llon	g		
power factor, Non- linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards. UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three 9 Phase Balance system – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : 9 Perinciple of Load compensation and Voltage regulation – Classical load balancing problem : 9 Doen loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrica	duration volt	age variations, Voltage imbalance, waveform distortion, Voltage fluctuation	ıs,			
Disturbance in supply voltage – Power quality standards. 9 UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three phase Balance system – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three phase four wire system 9 UNIT III CONVENTIONAL LOADCOMPENSATION METHODS 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure– voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9	Power freque	ency variation, Power acceptability curves – power quality problems: poor le	oad			
UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM 9 Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three phase bhase balance system – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non-linear loads – Concept of PF – Three phase three wire – Three phase unbalanced and distorted source supplying non-linear loads – Concept of PF – Three phase three wire – Three phase for wire system 9 UNIT III CONVENTIONAL LOADCOMPENSATION METHODS 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : 9 Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure– voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9 Rottifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure– voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9<	power factor	, Non-linear and unbalanced loads, DC offset in loads, Notching in load vo	ltage	,		
Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three phase Balance system – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three phase four wire system UNIT III CONVENTIONAL LOADCOMPENSATION METHODS 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : 9 Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure– voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9	Disturbance	in supply voltage – Power quality standards.				
Single phase sinusoidal, non- sinusoidal source supplying linear and nonlinear loads – Three phase Balance system – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three phase four wire system UNIT III CONVENTIONAL LOADCOMPENSATION METHODS 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : 9 Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure– voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9						1
phase Balance system – Three phase unbalanced system – Three phase unbalanced and distorted source supplying non- linear loads – Concept of PF – Three phase three wire – Three phase four wire system UNIT III CONVENTIONAL LOADCOMPENSATION METHODS 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure– voltage Restoration – Series Active Filter – Unified Power Quality Conditioner TOTAL: 45 PERIODS	UNIT II	ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM				9
Supplying non-linear loads – Concept of PF – Three phase three wire – Three phase four wire system 9 UNIT III CONVENTIONAL LOADCOMPENSATION METHODS 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : 0 Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure– voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9 TOTAL: 45 PERIODS	Single phase	sinusoidal, non- sinusoidal source supplying linear and nonlinear loads - T	hree			
phase four wire system 9 UNIT III CONVENTIONAL LOADCOMPENSATION METHODS 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure-voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9	phase Baland	ce system – Three phase unbalanced system – Three phase unbalanced and	d dis	torte	d so	urce
UNIT III CONVENTIONAL LOADCOMPENSATION METHODS 9 Principle of Load compensation and Voltage regulation – Classical load balancing problem : Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure-voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9	supplying no	n- linear loads – Concept of PF – Three phase three wire – Three				
Principle of Load compensation and Voltage regulation – Classical load balancing problem : Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure–voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9	phase four w	ire system				
Open loop balancing – Closed loop balancing, Current balancing – Harmonic reduction and voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. 9 UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure–voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9	UNIT III	CONVENTIONAL LOADCOMPENSATION METHODS				9
voltage sag reduction – Analysis of unbalance – instantaneous real and reactive powers – Extraction of fundamental sequence component. UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure–voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9 TOTAL: 45 PERIODS	Principle of	Load compensation and Voltage regulation – Classical load balancing problem	em :			
Extraction of fundamental sequence component. 9 UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure–voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9 TOTAL: 45 PERIODS	Open loop ba	alancing – Closed loop balancing, Current balancing – Harmonic reduction a	and			
UNIT IV LOAD COMPENSATION USING DSTATCOM 9 Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure–voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9 TOTAL: 45 PERIODS	voltage sag r	eduction – Analysis of unbalance – instantaneous real and reactive powers -	_			
Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure– voltage Restoration – Series Active Filter – Unified Power Quality Conditioner TOTAL: 45 PERIODS	Extraction of	f fundamental sequence component.				
Compensating single phase loads – Ideal three phase shunt compensator structure – Generating reference currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure– voltage Restoration – Series Active Filter – Unified Power Quality Conditioner TOTAL: 45 PERIODS						
currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure–voltage Restoration – Series Active Filter – Unified Power Quality Conditioner TOTAL: 45 PERIODS	UNIT IV	LOAD COMPENSATION USING DSTATCOM				9
currents using instantaneous PQ theory – Instantaneous symmetrical components theory – Generating reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure–voltage Restoration – Series Active Filter – Unified Power Quality Conditioner TOTAL: 45 PERIODS	Compensatir	g single phase loads – Ideal three phase shunt compensator structure – Ger	nerat	ing r	efere	ence
reference currents when the source is unbalanced – Realization and control of DSTATCOM – DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure– voltage Restoration – Series Active Filter – Unified Power Quality Conditioner 9 TOTAL: 45 PERIODS						
DSTATCOM in Voltage control mode 9 UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM 9 Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure–voltage Restoration – Series Active Filter – Unified Power Quality Conditioner TOTAL: 45 PERIODS	reference cu	urrents when the source is unbalanced - Realization and control of	DS	ТАТ	CON	Л –
Rectifier supported Dynamic Voltage Restorer – DC Capacitor supported DVR – DVR Structure– voltage Restoration – Series Active Filter – Unified Power Quality Conditioner TOTAL: 45 PERIODS						
voltage Restoration – Series Active Filter – Unified Power Quality Conditioner TOTAL: 45 PERIODS	UNIT V	SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM				9
	-		Struc	ture-	_	
COURSE OUTCOMES:		ΤΟΤΑ	L: 4	5 PH	ERIC)DS
COURSE OUTCOMES:						
	COURSE O	UTCOMES:				

At the	end of the course, the students will be able to:						
CO1	L: Understand the various basic terms and power quality issues.						
CO2	D2: Analyze single phase and three phase systems.						
CO3	Explain the importance of conventional load compensation systems.						
CO4	Explain load compensation problem using DSTATCOM.						
CO5	Understand the series compensation of power distribution systems.						
REFE	RENCES:						
1.	Arindam Ghosh "Power Quality Enhancement Using Custom Power Devices", Kluwer						
	Academic Publishers, 2002						
2.	R.C. Duggan, Mark.F.Mc Granaghan, Surya Santoas and H.Wayne Beaty, "Electrical						
	Power System Quality", McGraw-Hill, 2004						
3.	G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994						
4.	Bhim Singh, Ambrish Chandra, Kamal Al-Haddad, "Power Quality: Problems and						
5.	Mitigation Techniques", John Wiley &Sons,2015						
6	Jos Arrillaga and Neville R. Watson ," Power systemharmonics", Wiley, 2003.						
7	Derek A. Paice, "Power Electronics Converter Harmonics :Multipulse Methods for Clean						
	Power",Wiley,1999.						
8	Ewald Fuchs, Mohammad A. S. Masoum Power Quality in Power Systems and						
	Electrical Machines, Elseveir academic presspublications, 2011.						
L I	Monning of Course Outcomes to Program Outcomes						

Course	Program Outcomes								
outcome	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	-	-	3	2	1			
CO2	-	-	-	3	2	1			
CO3	1	-	1	3	2	1			
CO4	1	-	1	3	2	1			
CO5	1	-	1	3	2	1			
СО	1	-	1	3	2	1			

PE22231 POWER QUALITY

			Cognitive Level					
	Total 2	Total 16	Remember	Understand	Apply	Analyse(An)		
Unit No. and Title	Marks	Marks	(Kn) (Un) (Ay) No. of Qns. (marks) and CO					
			N		rks) and CO			
	2	1 either or	2(2) – CO1	1 either or				
Unit-I: Introduction		1 entiter or	2(2) - COI	(16) – CO1	-	-		
Introduction								
Unit-II: Analysis	5			1 either or				
of Single Phase	2	1 either or	2(2) - CO2		-	-		
And Three Phase	e			(16) – CO2				
System								
Unit-III:				1 either or				
Conventional	2	1 either or	2(2) - CO3		-	-		
Loadcompensati				(16) - CO3				
on Methods								
Unit-IV Load	2	1 either or	2(2) - CO4	1 either or				
Compensation		1 entiter of	2(2) - CO4	(16) – CO4	-	-		
Using Dstatcom								
Unit-V: Series				1 . 1				
Compensation of		1 either or	2(2) - CO5	1 either or	_	_		
Power	2		2(2) = CO3	(16) – CO5	-	-		
Distribution								
System								
	10	7 1	10(2)	5 either or				
Total Qns.	10	5 either or	10(2)	(16)	-	-		
				(10)				
Total Marks	20	80	20	80	_	-		
Weightage	20 %	80%	20%	80%	-	-		
	001		eightage for C					
Total Marks	CO1 20	CO2 20	CO3 20	CO4 20		CO5 20		
Weightage	20%	20	20	20		20		
weightage	2070	2070	2070	2070		2070		

PE22232	MACHINE LEARNING AND DEEP LEARNING	L	Т	Р	С
		3	0	0	3
COURSE	OBJECTIVES:	1			
• To u	nderstand about the learning problem and algorithms				
• To I	ntroduce the machine learning fundamentals and significance				
• To e	nable the students to acquire knowledge about pattern recognition				
• To n	notivate the students to apply deep learning algorithms for solving real life pr	oble	ms		
• To p	rovide insight about python for data science				
UNIT I	LEARNING PROBLEMS AND ALGORITHMS				9
Various pa	radigms of learning problems, Supervised, Semi-supervised and Unsupervise	ed al	gorit	hms	•
UNIT II	MACHINE LEARNING – FUNDAMENTALS & FEATURE SELE CLASSIFICATIONS	CTI	ONS	&	9
stopping, 1	ality, training, testing, validation, cross validation, over fitting, under-fittin regularization, bias and variance. Feature Selection, normalization, dimension : KNN, SVM, Decision trees, Naïve Bayes, Binary classification, multi cla	onalit	y ree	ducti	on,
UNIT III	DEEP LEARNING: CONVOLUTIONAL NEURAL NETWORKS				9
	DEEP LEARNING: CONVOLUTIONAL NEURAL NETWORKS ward networks, Activation functions, back propagation in CNN, op	otimi	zers	, ba	-
Feed for		-			tch
Feed for	ward networks, Activation functions, back propagation in CNN, op	-			tch
Feed forv normalizat UNIT IV State, Str Autoencoo	vard networks, Activation functions, back propagation in CNN, option, convolution layers, pooling layers, fully connected layers, dropout, Examination	nple: Gener	s of (ating	CNN g T	itch Is 9 ext,
Feed forv normalizat UNIT IV State, Str Autoencoo	ward networks, Activation functions, back propagation in CNN, op- tion, convolution layers, pooling layers, fully connected layers, dropout, Exar DEEP LEARNING: RNNS, AUTOENCODERS AND GANS ucture of RNN Cell, LSTM and GRU, Time distributed layers, Collers: Convolutional Autoencoders, Denoising autoencoders, Variational autoencod	nple: Gener	s of (ating	CNN g T	itch Is 9 ext,
Feed forv normalizat UNIT IV State, Str Autoencoo The discrit UNIT V Data scien Variables variables, assignmen	ward networks, Activation functions, back propagation in CNN, op- tion, convolution layers, pooling layers, fully connected layers, dropout, Exar DEEP LEARNING: RNNS, AUTOENCODERS AND GANS ucture of RNN Cell, LSTM and GRU, Time distributed layers, Collers: Convolutional Autoencoders, Denoising autoencoders, Variational autoeminator, generator, DCGANs	bener bener enco on c lues meti- erato	ating ders,	GA g T GA	9 9 ext, Ns: 9 0 n, iple ors,
Feed forv normalizat UNIT IV State, Str Autoencoo The discrit UNIT V Data scien Variables variables, assignmen	ward networks, Activation functions, back propagation in CNN, option, convolution layers, pooling layers, fully connected layers, dropout, Examinator, convolution layers, pooling layers, fully connected layers, dropout, Examinator, generator, CGANs INTRODUCTION TO PYTHON FOR DATA SCIENCE Ince- data outlook- tools for data science. Introduction to python, evoluti and Data types; naming variables, naming conventions, assigning val Data types, object data type, Operators-operators and operands, arith t operators-Relational or comparison operators, logical operators -bitwise operators	on con con con con con con con con con c	s of (ating ders, f p to 1 c op rs-Se	g T GA pytho mult berat	9 ext, Ns: 9 n , ple ors, nce
Feed forv normalizat UNIT IV State, Str Autoencoo The discrit UNIT V Data scien Variables variables, assignmen data types	ward networks, Activation functions, back propagation in CNN, option, convolution layers, pooling layers, fully connected layers, dropout, Examinator, generator, DCGANs INTRODUCTION TO PYTHON FOR DATA SCIENCE Ince- data outlook- tools for data science. Introduction to python, evoluti and Data types; naming variables, naming conventions, assigning val Data types, object data type, Operators-operators and operands, arith t operators-Relational or comparison operators, logical operators -bitwise operand associated operations-Python Pandas, Python Numpy, Python Scikit-lear	on con con con con con con con con con c	s of (ating ders, f p to 1 c op rs-Se	g T GA pytho mult berat	9 ext, Ns: 9 n , ple ors, nce
Feed forv normalizat UNIT IV State, Str Autoencoo The discrit UNIT V Data scien Variables variables, assignmen data types	ward networks, Activation functions, back propagation in CNN, op ion, convolution layers, pooling layers, fully connected layers, dropout, Exar DEEP LEARNING: RNNS, AUTOENCODERS AND GANS ucture of RNN Cell, LSTM and GRU, Time distributed layers, C lers: Convolutional Autoencoders, Denoising autoencoders, Variational autoe minator, generator, DCGANs INTRODUCTION TO PYTHON FOR DATA SCIENCE nce- data outlook- tools for data science. Introduction to python, evoluti and Data types; naming variables, naming conventions, assigning val Data types, object data type, Operators-operators and operands, arith t operators-Relational or comparison operators, logical operators -bitwise op and associated operations-Python Pandas, Python Numpy, Python Scikit-lear TOTAN	on con con con con con con con con con c	s of (ating ders, f p to 1 c op rs-Se	g T GA pytho mult berat	9 ext, Ns: 9 n , ple ors, nce
Feed forv normalizat UNIT IV State, Str Autoencoo The discrit UNIT V Data scien Variables variables, assignmen data types	ward networks, Activation functions, back propagation in CNN, option, convolution layers, pooling layers, fully connected layers, dropout, Examinator, generator, DCGANs INTRODUCTION TO PYTHON FOR DATA SCIENCE Ince- data outlook- tools for data science. Introduction to python, evoluti and Data types; naming variables, naming conventions, assigning val Data types, object data type, Operators-operators and operands, arith t operators-Relational or comparison operators, logical operators -bitwise operand associated operations-Python Pandas, Python Numpy, Python Scikit-lear TOTA	on con con con con con con con con con c	s of (ating ders, f p to 1 c op rs-Se	g T GA pytho mult berat	9 ext, Ns: 9 n , ple ors, nce
Feed forv normalizat UNIT IV State, Str Autoencoo The discrit UNIT V Data scien Variables variables, assignmen data types COURSE At the end	Activation functions, back propagation in CNN, option, convolution layers, pooling layers, fully connected layers, dropout, Examinator, convolutional Autoencoders, Denoising autoencoders, Variational autoeminator, generator, DCGANs INTRODUCTION TO PYTHON FOR DATA SCIENCE Ince- data outlook- tools for data science. Introduction to python, evoluti and Data types; naming variables, naming conventions, assigning val Data types, object data type, Operators-operators and operands, arith t operators-Relational or comparison operators, logical operators -bitwise operand associated operations-Python Pandas, Python Numpy, Python Scikit-lear TOTATOUTCOMES: Information of the course, the students will be able to:	on con con con con con con con con con c	s of (ating ders, f p to 1 c op rs-Se	g T GA pytho mult berat	9 ext, Ns: 9 n, ple ors, nce

CO4	Construct advanced neural network architectures such as RNN, Autoencoders, and GANs				
CO5	Apply python for machine learning applications.				
REFE	RENCES:				
1.	J. S. R. Jang, C. T. Sun, E. Mizutani, "Neuro Fuzzy and Soft Computing - A Computational				
	Approach to Learning and Machine Intelligence", PHI learning,2012.				
2.	Ian Good fellow, YoshuaBengio and Aaron Courville "Deep Learning", , MIT Press, 2016				
3.	evor Hastie, Robert Tibshirani and Jerome Friedman "The Elements of Statistical Learning",				
	Second Edition. 2009.				
4.	Christopher Bishop "Pattern Recognition and Machine Learning", Springer. 2006.				
5.	Shai Shalev-Shwartz and Shai Ben-David "Understanding Machine Learning". Cambridge				
	University Press. 2017.				
6.	Samir Madhavan "Mastering python for data science", PACKT Publishing, 2015.				

Course			Program	m Outcomes		
outcome	PO1	PO2	PO3	PO4	PO5	PO6
CO1				3		
CO2	1			3	1	
CO3	1			3	1	
CO4	2		2	3	1	2
CO5	1		1	1	1	1
СО	2		2	3	1	2

				Cogniti	ve Level					
	Total 2	Total 16	Remember	Understand		Analyse(An)				
Unit No. and Title	Marks	Marks	(Kn) (Un) (Ay) No. of Qns. (marks) and CO							
			IN	1 either or	rks) and CO					
Unit-I: Learning	2	1 either or	2(2) – CO1		-	-				
Problems and				(16) – CO1						
Algorithms										
Unit-II: Machine				4 . 4						
Learning –	2	1 either or	2(2) - CO2	1 either or						
Fundamentals & Feature	2		2(2) - CO2	(16) - CO2	-	-				
Selections &										
Classifications										
Unit-III: Deep					1 either or					
Learning:	2	1 either or	2(2) — CO3			-				
Convolutional					(16) - CO3					
Neural Networks										
Unit IV- Deep					1 either or					
Learning: Rnns,	2	1 either or	2(2) - CO4	-	(16) — CO4					
Autoencoders And Gans					(10) = C04					
Unit-V:					1 either or					
Introduction to	2	1 either or	2(2) - CO5	-		-				
Python for Data	_		2(2) 005		(16) — CO5					
Science										
	10	5 .: 41	10(2)	2 either or	3 either or					
Total Qns.	10	5 either or	10(2)	(16)	(16)	-				
Total Marks	20	80	20	32	48	-				
Weightage	20 %	80%	20%	48%	32%	-				
	I	We	ightage for C	COs	1	1				
	CO1	CO2	CO3	CO		CO5				
Total Marks	20	20	20	20		20				
Weightage	20%	20%	20%	20%)	20%				

PE22233	IOT FOR SMART SYSTEMS			Р	C					
		3	0	0	3					
COURSE	OBJECTIVES:									
To study about Internet of Things technologies and its role in real time applications										
To introduce the infrastructure required for IOT										
• To f	amiliarize the accessories and communication techniques for IOT									
• To p	rovide insight about the embedded processor and sensors required for IOT									
To familiarize the different platforms and Attributes for IOT										
UNIT I	INTRODUCTION TO INTERNET OF THINGS				9					
	Hardware and software requirements for IOT, Sensor and actuators, Technology pical IOT applications, Challenges in IOT implementation, Trends and implications.	/ driv	vers,	Busi	iness					
UNIT II	IOT ARCHITECTURE				9					
	nce model and architecture -Node Structure - Sensing, Processing, Commun g - Topologies, Layer/Stack architecture, IOT standards, Cloud computing for IoT, B y beacons				•					
UNIT III	PROTOCOLS AND WIRELESS TECHNOLOGIES FOR IOT				9					
GPRS, sm	DLS: NFC, SCADA and RFID, Zigbee MIPI, M-PHY, UniPro, SPMI, SPI, M-PCIe C all cell. Wireless technologies for IOT: WiFi (IEEE 802.11), Bluetooth/Bluetooth Sm (IEEE 802.15.4), 6LoWPAN, Proprietary systems-Recent trends									
UNIT IV	IOT PROCESSORS				9					
	ttributes: Big-Data Analytics for IOT, Dependability, Interoperability, Securit processors for IOT: Introduction to Python programming -Building IOT with RA				•					
UNIT V	CASE STUDIES				9					
	OT, Home Automation- Smart refrigerator, Smart Oven, Smart Washer and Dryer, ected vehicles, electric vehicle charging, Environment, Agriculture, Productivity									
	ΤΟΤΑ	L: 4	5 PE	CRIC	DDS					
COURSE	OUTCOMES:									
At the en	d of the course, the students will be able to:									
CO1:	Analyze the concepts of IOT and its present developments									
CO2:	Compare and contrast different platforms and infrastructures available for IOT									
CO3:	Explain different protocols and communication technologies used in IOT									
CO4:	CO4: Analyze the big data analytic and programming of IOT									
CO5:	Implement IOT solutions for smart applications									
REFERE	NCES:									
1. 4	arshdeepBahga and VijaiMadisetti : A Hands-on Approach "Internet of Things", Univ	ersiti	es Pr	ess 2	015.					
	ersent, David Boswarthick and Omar Elloumi "The Internet of Things", Wiley, 2016.									

3.	Samuel Greengard, "The Internet of Things", The MIT press, 2015.
4.	Adrian McEwen and Hakim Cassimally" Designing the Internet of Things "Wiley, 2014
5.	Jean- Philippe Vasseur, Adam Dunkels, "Interconnecting Smart Objects with IP: The Next Internet"
	Morgan Kuffmann Publishers, 2010
6.	
7.	Lingyang Song/DusitNiyato/ Zhu Han/ Ekram Hossain," Wireless Device-to-Device Communications and Networks, CAMBRIDGE UNIVERSITY PRESS,2015.

Course			Progra	m Outcomes		
outcome	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	1	1	-	2
CO2	1	-	1	1	-	2
CO3	-	-	-	-	-	2
CO4	1	-	-	-	-	2
CO5	1	-	-	-	-	2
СО	1	-	1	1	-	2

PE22233 IOT FOR SMART SYSTEMS

				Cognitiv	e Level		
	Total 2	Total 16	Remember	Understand	Apply	Analyse(An)	
Unit No. and Title	Marks	Marks	(Kn)	(Un)	(Ay)		
			N	o. of Qns. (mar	ks) and CO	1	
Unit-I:	2	1 .1		1 either or			
Introduction to Internet of Things	2	1 either or	2(2) – CO1	(16) – CO1	-	-	
				1 either or			
Unit-II: Iot Architecture	2	1 either or	2(2) - CO2	(16) – CO2	-	-	
Unit-III: Protocols				1 either or			
and Wireless	2	1 either or	2(2) — CO3		-	-	
Technologies for				(16) - CO3			
Iot							
	2	1 .1		1 either or			
Unit IV- Iot Processors	2	1 either or	2(2) - CO4	(16) – CO4	-	-	
				1 either or			
Unit-V: Case Studies	2	1 either or	2(2) – CO5	(16) – CO5	-	-	
				5 either or			
Total Qns.	10	5 either or	10(2)	(16)	-	-	
Total Marks	20	80	20	80	-	-	
Weightage	20 %	80%	20%	80%	-	-	
			eightage for C			•	
	CO1	CO2	CO3	CO4		CO5	
Total Marks	20	20	20	20		20	
Weightage	20%	20%	20%	20%		20%	

	MEMS DESIGN OF SENSORS AND ACTUATORS	L	Т	Р	С
		3	0	0	3
COURSE O	BJECTIVES:				
• To exp	ain the learning process to design micro sensors, embedded sensors & actuate	ors			
• To ana	yse the electrostatic sensors and actuators through MEMS and NEMS devices	8			
• To exa	nine the thermal sensors and actuators through MEMS and NEMS devices				
• To exa	nine the piezoelectric sensors and actuators through MEMS and NEMS				
• To dest	gn piezoresistive sensors for biomedical and micro fluidic applications				
	MICRO-FABRICATION, MATERIALS AND ELECTRO-MECHA	NICA	٩L		9
UNIT I	CONCEPTS				L.
	micro fabrication - Silicon and other material based fabrication pro-				-
-	of semiconductors-Crystal planes and orientation-stress and strain flexu	iral b	eam	ben	ding
analysis- tors	ional deflections-Intrinsic stress- resonant frequency and quality factor.				
UNIT II	ELECTROSTATIC SENSORS AND ACTUATION				9
Principle, ma	terial, design and fabrication of parallel plate capacitors as electrostatic sense	sors a	nd a	ctuat	ors-
Applications					
UNIT III	THERMAL SENSING AND ACTUATION				9
Principle, m	terial, design and fabrication of thermal couples, thermal bimorph sensor	s, the	rmal	resi	stor
sensors-Appl					
UNITIV	PIEZOELECTRIC SENSING AND ACTUATION				9
	PIEZOELECTRIC SENSING AND ACTUATION effect-cantilever piezo electric actuator model-properties of piezo	electr	ic 1	mate	-
UNIT IV Piezoelectric Applications	effect-cantilever piezo electric actuator model-properties of piezo	electr	ic 1	mate	-
Piezoelectric	effect-cantilever piezo electric actuator model-properties of piezo	electr	ic 1	mate	-
Piezoelectric Applications UNIT V Piezoresistiv	effect-cantilever piezo electric actuator model-properties of piezo CASE STUDIES e sensors, Magnetic actuation, Micro fluidics applications, Medical app				rials 9
Piezoelectric Applications UNIT V Piezoresistiv	effect-cantilever piezo electric actuator model-properties of piezo CASE STUDIES e sensors, Magnetic actuation, Micro fluidics applications, Medical app				rials 9
Piezoelectric Applications UNIT V Piezoresistiv	effect-cantilever piezo electric actuator model-properties of piezo CASE STUDIES e sensors, Magnetic actuation, Micro fluidics applications, Medical app	plicati	ions,	Op	rials
Piezoelectric Applications UNIT V Piezoresistiv MEMSNEM	effect-cantilever piezo electric actuator model-properties of piezo CASE STUDIES e sensors, Magnetic actuation, Micro fluidics applications, Medical app AS Devices.	plicati	ions,	Op	rials
Piezoelectric Applications UNIT V Piezoresistiv MEMSNEM	effect-cantilever piezo electric actuator model-properties of piezo CASE STUDIES e sensors, Magnetic actuation, Micro fluidics applications, Medical app AS Devices. TOT	plicati	ions,	Op	rials
Piezoelectric Applications UNIT V Piezoresistiv MEMSNEM	effect-cantilever piezo electric actuator model-properties of piezo CASE STUDIES e sensors, Magnetic actuation, Micro fluidics applications, Medical app IS Devices. TOT. UTCOMES:	plicati AL: 4	ions, 5 PI	Op	rials
Piezoelectric Applications UNIT V Piezoresistiv MEMSNEM COURSE O At the end o	effect-cantilever piezo electric actuator model-properties of piezo CASE STUDIES e sensors, Magnetic actuation, Micro fluidics applications, Medical app AS Devices. TOT. UTCOMES: f the course, the students will be able to:	plicati	ons, 5 PI ors	Op	rials
Piezoelectric Applications UNIT V Piezoresistiv MEMSNEM COURSE O At the end o CO1:	effect-cantilever piezo electric actuator model-properties of piezo CASE STUDIES e sensors, Magnetic actuation, Micro fluidics applications, Medical app AS Devices. TOT. UTCOMES: f the course, the students will be able to: Explain the learning process to design micro sensors, embedded sensors & a Analyse the electrostatic sensors and actuators through MEMS and NEMS device Examine the thermal sensors and actuators through MEMS and NEMS device	plicati AL: 4 actuate levice ces	ons, 5 PI ors	Op	rials
Piezoelectric Applications UNIT V Piezoresistiv MEMSNEM COURSE O At the end o CO1: CO2:	effect-cantilever piezo electric actuator model-properties of piezo CASE STUDIES e sensors, Magnetic actuation, Micro fluidics applications, Medical app IS Devices. TOT UTCOMES: f the course, the students will be able to: Explain the learning process to design micro sensors, embedded sensors & a Analyse the electrostatic sensors and actuators through MEMS and NEMS d	plicati AL: 4 actuate levice ces	ons, 5 PI ors	Op	rials
Piezoelectric Applications UNIT V Piezoresistiv MEMSNEM COURSE O At the end o CO1: CO2: CO3:	effect-cantilever piezo electric actuator model-properties of piezo CASE STUDIES e sensors, Magnetic actuation, Micro fluidics applications, Medical app AS Devices. TOT. UTCOMES: f the course, the students will be able to: Explain the learning process to design micro sensors, embedded sensors & a Analyse the electrostatic sensors and actuators through MEMS and NEMS device Examine the thermal sensors and actuators through MEMS and NEMS device	plicati AL: 4 actuate levice ces	ons, 5 PI ors	Op	rials
Piezoelectric Applications UNIT V Piezoresistiv MEMSNEM COURSE O At the end o CO1: CO2: CO3: CO3: CO4: CO5: REFERENC	effect-cantilever piezo cASE STUDIES esensors, Magnetic actuation, Micro fluidics applications, Medical applies e sensors, Magnetic actuation, Micro fluidics applications, Medical applies MS Devices. TOT. UTCOMES: f the course, the students will be able to: Explain the learning process to design micro sensors, embedded sensors & a Analyse the electrostatic sensors and actuators through MEMS and NEMS devid Examine the thermal sensors and actuators through MEMS and NEMS devid Examine the piezoelectric sensors and actuators through MEMS and NEMS Design piezoresistive sensors for biomedical and micro fluidic applications ES:	plicati AL: 4 actuate levice ces	ons, 5 PI ors	Op	rials
Piezoelectric Applications UNIT V Piezoresistiv MEMSNEM COURSE O At the end o CO1: CO2: CO3: CO3: CO4: CO5: REFERENC	effect-cantilever piezo electric actuator model-properties of piezo CASE STUDIES e sensors, Magnetic actuation, Micro fluidics applications, Medical applies e sensors, Magnetic actuation, Micro fluidics applications, Medical applies display="block">IS Devices. TOT. UTCOMES: f the course, the students will be able to: Explain the learning process to design micro sensors, embedded sensors & a Analyse the electrostatic sensors and actuators through MEMS and NEMS devid Examine the thermal sensors and actuators through MEMS and NEMS devid Examine the piezoelectric sensors and actuators through MEMS and NEMS Design piezoresistive sensors for biomedical and micro fluidic applications	plicati AL: 4 actuate levice ces	ons, 5 PI ors	Op	rials

3.	Boston, "Micromachined Transducers Source book", WCB McGraw Hill, 1998.
4.	M.H.Bao "Micromechanical transducers: Pressure sensors, accelerometers and
	gyroscopes", Elsevier, Newyork, 2000.
5.	James J. Allen, "Micro Electro Mechanical System Design" CRC press 2005.

Course			Progra	m Outcomes		
outcome	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	1	-	-	-	-
CO2	-	1	1	1	-	-
CO3	-	1	-	1	-	-
CO4	-	1	1	1	1	-
CO5	1	1	1	1	1	1
СО	1	1	1	1	1	1

Table of Specification for End Semester Question Paper

PE22234 MEMS DESIGN OF SENSORS AND ACTUATORS

		Total 16 Marks	Cognitive Level					
Unit No. and Title	Total 2 Marks		Remember (Kn)	Understand (Un)	Apply (Ay)	Analyse(An)		
			No. of Qns. (marks) and CO					
Unit-I: Micro- Fabrication, Materials and Electro- Mechanical	2	1 either or	2(2) – CO1	1 either or (16) – CO1	_	-		
Concepts								
Unit-II: Electrostatic Sensors and Actuation	2	1 either or	2(2) - CO2	1 either or (16) – CO2	-	-		
Unit-III: Thermal Sensing and Actuation	2	1 either or	2(2) — CO3	1 either or (16) — CO3	-	-		

Unit IV- Piezoelectric Sensing and Actuation	2	1 either or	2(2) - CO4	1 either or (16) – CO4	-	-	
Unit-V: Case Studies	2	1 either or	2(2) – CO5	1 either or (16) – CO5	-	-	
Total Qns.	10	5 either or	10(2)	5 either or (16)	-	-	
Total Marks	20	80	20	80	-	-	
Weightage	20 %	80%	20%	80%	-	-	
Weightage for COs							
	CO1	CO2	CO3	CO4		CO5	
Total Marks	20	20	20	20		20	
Weightage	20%	20%	20%	20%		20%	

PE22341	RENEWABLE ENERGY TECHNOLOGY			Р	C
		3	0	0	3
COURSE OBJE	CTIVES:	1	1	1	<u> </u>
1	in the Conventional and Non-Conventional energy resources, environmen and international energy scenario.	tal in	npac	ts,	
• To devel	op the concept and techniques of electrical applications for solar photovol	taic s	syste	ms.	
To constr	ruct solar heating applications used in conversion of energy through solar	therr	nal s	yster	ms.
1	in the concept and techniques used in conversion of energy through Wind on systems.	ener	gу		
	stand the concept about biomass, geothermal, hydro power plant, tidal energy conversion, fuel cell, energy storage and hybrid energy systems.	ergy,	ocea	ın	
UNIT I	INTRODUCTION OF ENERGY SOURCES				9
resources in Indi	ble energy sources, environmental impact of renewable energy sources, r a, Current usage of renewable energy sources in India and international, f y in power production and development of renewable energy technologie nd wind energy.	uture	e pot	entia	

UNIT II	SOLAR PHOTOVOLTAIC ENERGY CONVERSION	9							
tracking. A	V Systems- PV Module I-V Characteristics, configuration of PV system, maximum power application solar PV system in battery charger, domestic lighting, street lighting, and water power generation schemes.	-							
UNIT III	SOLAR THERMAL ENERGY CONVERSION	9							
Applicatio industry ar	mal Energy Conversion from plate Solar Collectors, Concentrating Collectors and its Type ns of Solar Thermal Energy use of low and medium, high temperature and recent advances ad buildings. Solar Thermal Power Plant, Solar cookers, Solar hot water systems, Solar dry llation, Solar greenhouses.	in							
UNIT IV	WIND ENERGY	9							
	and its resource assessment, wind turbine components, wind energy conversion systems (W ion of WECS devices, wind electric generating and control systems, characteristics and us.	/ECS),							
UNIT V	OTHER TYPES OF ENERGY	9							
Hydrogen India. OTE	v, biogas generation, thermal gasification of biomass, biomass gasifies, Energy conversion and Fuel cells, Geo thermal energy Resources, methods of harnessing the energy, potential EC, Principles utilization, setting of OTEC plants. Tidal and wave energy: Potential and techniques, mini- hydel power plants and their economics.	in							
COURSE	TOTAL: 45 PERIOD	S							
At the end	of the course, the students will be able to:								
CO1:	Explaining the Conventional and Non-Conventional energy resources, environmental impacts, national and international energy scenario.								
CO2:	Develop the concept and techniques of electrical applications for solar photovoltaic sy	stems.							
CO3:	Construct solar heating applications used in conversion of energy through solar therma systems.	ıl							
CO4:	Understand the concept and techniques used in conversion of energy through Wind en conversion systems.	erstand the concept and techniques used in conversion of energy through Wind energy							
CO5:	Demonstrate the concept about biomass, geothermal, hydro power plant, tidal energy, thermal energy conversion, fuel cell, energy storage and hybrid energy systems	ocean							
REFEREN	CES:								
1	Twidell & Wier, 'Renewable Energy Resources' CRC Press(Taylor & Francis).								

2	Chetan Singh Solanki, "Solar Photovoltaics : Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2011
3	Joshua Earnest, Tore Wizeliu, 'Wind Power Plants and Project Development', PHI Learning Pvt.Ltd, New Delhi, 2011.
4	D.P.Kothari, K.C Singal, Rakesh Ranjan "Renewable Energy Sources and Emerging Technologies", PHI Learning Pvt.Ltd, New Delhi, 2013.
5	Scott Grinnell, "Renewable Energy & Sustainable Design", CENGAGE Learning, USA, 2016.

Course	РО								
outcomes	1	2	3	4	5	6			
CO1	1	3	-	-	-	-			
CO2	2	2	1	2	1	2			
CO3	2	2	1	2	-	2			
CO4	1	2	2	2	-	-			
CO5	1	1	-	1	-	-			
СО	1	2	1	2	1	2			

PE22341 RENEWABLE ENERGY TECHNOLOGY

				Cogniti	ve Level	
	Total 2	Total 16	Remember	Understand		Analyse(An)
Unit No. and Title	Marks	Marks	(Kn)	(Un)	(Ay)	
			N	o. of Qns. (ma	rks) and CO	
	2	1either or	1(2)-CO1	1(2)-CO1	-	-
Unit-I: Introduction of Energy Sources				1 either or (16)-CO1		
Unit-II: Solar Photovoltaic Energy Conversion	2	1either or	1(2)-CO2	1(2)-CO2	1either or (16)-CO2	-
Unit-III: Solar Thermal Energy Conversion	2	1either or	1(2)-CO3	1(2)-CO3	1 either or (16)-CO3	-

	2	1either or	1(2)-CO4	1(2)-CO4		-	-		
Unit IV- Wind				1 either or					
Energy				(16)-CO4					
	2	1either or	1(2)-CO5	1(2)-CO5		-	-		
Unit-V: Other				1 either or					
Types Of Energy	,			(16)-CO5					
	10	5either or	5(2)	5(2)	2 eith	er or	-		
T-4-1 On a				3 either or	(16)			
Total Qns.				(16)					
Total Marks	20	80	10	58		32	-		
Weightage	20%	80%	10%	58%	58% 32%		-		
	Weightage for COs								
	CO1	CO2	<u>CO3</u>				CO5		
Total Marks	20	20	20	20			20		
Weightage	20%	20%	20%	209	%		20%		

PE22342	WIND ENERGY CONVERSION TECHNOLOGY	L	Т	Р	C
		3	0	0	3
COURSE OBJEC	TIVES:			I	
• To attain	knowledge on the basic concepts of Wind energy and its conversion system	ıs.			
• To explain	ning the mathematical model of wind energy conversion system and its cor	ntrol.			
To demor	strate the fixed speed wind energy conversion system.				
To demor	strate the need of Variable speed system and its modeling.				
• To illustra	te the grid integration issues of wind power.				
UNIT I	INTRODUCTION OF WIND ENERGY				9
-	VECS-WECS schemes-Power obtained from wind-simple momentum theo in's theory-Aerodynamics of Wind turbine	ry- P	owe	er	<u> </u>

UNIT II	WIND TURBINES	9
speed ratio-No	T-Power developed-Thrust-Efficiency-Rotor selection-Rotor design considerations- Tip o. Of Blades-Blade profile-Power Regulation-yaw control, Pitch angle control- stall con- naximum power extraction.	
UNIT III	FIXED SPEED SYSTEMS	9
Synchronous	/stems- Constant speed constant frequency systems -Choice of Generators Deciding factor Generator-Squirrel Cage Induction Generator- Model of Wind Speed- Model wind turbir Frain model- Generator model for Steady state and Transient stability analysis.	
UNIT IV	VARIABLE SPEED SYSTEMS	9
systems synch	ble speed systems-Power-wind speed characteristics-Variable speed constant frequency aronous generator- DFIG- PMSG -Variable speed generators modelling - Variable speed ency schemes. Tentative	
UNIT V	GRID CONNECTED SYSTEMS	9
ancillary servi	Interction requirements, low-voltage ride through (LVRT), ramp rate limitations, and supplices for frequency and voltage control, current practices and industry trends wind on impact on steady-state and dynamic performance of the power system including mode	ling
ancillary servi	ices for frequency and voltage control, current practices and industry trends wind on impact on steady-state and dynamic performance of the power system including mode TOTAL: 45 PERIOR	ling
ancillary servi interconnectic issue. COURSE OU	ices for frequency and voltage control, current practices and industry trends wind on impact on steady-state and dynamic performance of the power system including mode TOTAL: 45 PERIOR	ling
ancillary servi interconnectic issue. COURSE OU	ices for frequency and voltage control, current practices and industry trends wind on impact on steady-state and dynamic performance of the power system including mode TOTAL: 45 PERIOD TCOMES:	ling
ancillary servi interconnectio issue. COURSE OU At the end of	ices for frequency and voltage control, current practices and industry trends wind on impact on steady-state and dynamic performance of the power system including mode TOTAL: 45 PERIOE TCOMES: the course, the students will be able to:	ling DS
ancillary servi interconnectio issue. COURSE OU' At the end of t	ices for frequency and voltage control, current practices and industry trends wind on impact on steady-state and dynamic performance of the power system including mode TOTAL: 45 PERIOD TCOMES: the course, the students will be able to: Outline the basic concepts of Wind energy and its conversion systems	ling DS
ancillary servi interconnectio issue. COURSE OU ⁷ At the end of the CO1: CO2: CO3:	Ices for frequency and voltage control, current practices and industry trends wind on impact on steady-state and dynamic performance of the power system including mode TOTAL: 45 PERIOE TCOMES: the course, the students will be able to: Outline the basic concepts of Wind energy and its conversion systems Explaining the mathematical model of wind energy conversion system and its control	ling DS
ancillary servi interconnection issue. COURSE OUT At the end of the CO1: CO2:	Ices for frequency and voltage control, current practices and industry trends wind on impact on steady-state and dynamic performance of the power system including mode TOTAL: 45 PERIOF TCOMES: the course, the students will be able to: Outline the basic concepts of Wind energy and its conversion systems Explaining the mathematical model of wind energy conversion system and its control Demonstrate the fixed speed wind energy conversion system.	ling DS
ancillary servi interconnection issue. COURSE OUT At the end of the CO1: CO2: CO3: CO4:	ices for frequency and voltage control, current practices and industry trends wind on impact on steady-state and dynamic performance of the power system including mode TOTAL: 45 PERIOD TOTAL: 45 PERIOD TCOMES: Outline the basic concepts of Wind energy and its conversion systems Explaining the mathematical model of wind energy conversion system and its control Demonstrate the fixed speed wind energy conversion system. Demonstrate the need of Variable speed system and its modeling. Illustrate the grid integration issues of wind power.	ling DS
ancillary servi interconnection issue. COURSE OUT At the end of the CO1: CO2: CO3: CO4: CO5:	ices for frequency and voltage control, current practices and industry trends wind on impact on steady-state and dynamic performance of the power system including mode TOTAL: 45 PERIOD TOTAL: 45 PERIOD TCOMES: Outline the basic concepts of Wind energy and its conversion systems Explaining the mathematical model of wind energy conversion system and its control Demonstrate the fixed speed wind energy conversion system. Demonstrate the need of Variable speed system and its modeling. Illustrate the grid integration issues of wind power.	ling DS
ancillary servi interconnection issue. COURSE OUT At the end of the CO1: CO2: CO3: CO3: CO4: CO5: TEXT BOOK	ices for frequency and voltage control, current practices and industry trends wind on impact on steady-state and dynamic performance of the power system including mode TOTAL: 45 PERIOE TCOMES: the course, the students will be able to: Outline the basic concepts of Wind energy and its conversion systems Explaining the mathematical model of wind energy conversion system and its control Demonstrate the fixed speed wind energy conversion system. Demonstrate the need of Variable speed system and its modeling. Illustrate the grid integration issues of wind power. S:	ling DS

4	Ion Boldea, "Variable speed generators", Taylor & Francis group,2006
5	E.W.Golding "The generation of Electricity by wind power", Redwood burn Ltd., Trowbridge,1976.
6	N. Jenkins," Wind Energy Technology" John Wiley &Sons,1997.
7	Power Conversion and Control Of Wind Energy Systems, Bin Wu, 2011, Wiley-IEEE
8	Wind Electrical Systems, S.N. Bhadra, 2005, Oxford
9	Wind Power Integration - Connection and System Operational Aspects, Brendan Fox, 2014, IET

Course	РО							
outcomes	1	2	3	4	5	6		
CO1	-	1	1	2	-	-		
CO2	2	2	2	3	1	1		
CO3	1	-	1	1	1	-		
CO4	1	2	1	2	2	-		
CO5	1	2	-	2	2	-		
СО	1	2	1	2	2	1		

Table of Specification for End Semester Question PaperPE22342WIND ENERGY CONVERSION TECHNOLOGY

				Cognitiv	ve Level	
	Total 2	Total 16	Remember	Understand	Apply	Analyse(An)
Unit No. and Title	Marks	Marks	(Kn)	(Un)	(Ay)	
			Ν	o. of Qns. (ma	rks) and CO	
	2	1either or	1(2)-CO1	1(2)-CO1	-	-
Unit-I: INTRODUCTION OF WIND ENERGY				1 either or (16)-CO1		
	2	1either or	1(2)-CO2	1(2)-CO2	-	-
Unit-II: WIND TURBINES				1either or (16)-CO2		

	2	1either or	1(2)-CO3	1(2)-CO3	-	-
Unit-III: FIXED SPEED				1 either or		
SYSTEMS				(16)-CO3		
	2	1either or	1(2)-CO4	1(2)-CO4	-	-
Unit IV- VARIABLE SPEED				1 either or		
SYSTEMS				(16)-CO4		
	2	1either or	1(2)-CO5	1(2)-CO5	-	-
Unit-V: GRID CONNECTED				1 either or		
SYSTEMS				(16)-CO5		
	10	5either or	5(2)	5(2)	-	-
				5 either or		
Total Qns.				(16)		
Total Marks	20	80	10	90	-	-
Weightage	20%	80%	10%	90%	-	-
		We	eightage for (COs		
	CO1	CO2	CO3	CO4	•	CO5
Total Marks	20	20	20	20		20
Weightage	20%	20%	20%	20%		20%

PE22343	ENERGY MANAGEMENT AND AUDITING	L	Т	Р	C
		3	0	0	3
COURSE O	BJECTIVES:				<u> </u>
• To u	nderstand the energy scenario and the concepts related to energy manageme	nt			
• To s	tudy the process behind energy audit.				
• To s	tudy understand the energy action planning and financing.				
• To e	mphasize the energy management of various electrical equipment.				
• To il	lustrate the concept of energy efficient technologies				
UNIT I	ENERGY SCENARIO				9
on PPP – El	ergy and its various forms - Conventional and non-conventional sources – I ectricity pricing in India – Energy Security - Schemes under Energy conserv nergy policy - Electricity Act 2003 - NAPCC	-	•		•
UNIT II	ENERGY AUDITING				9
for energy a energy costs	Need - Energy audit methodology: audit preparation, execution and reportinudit - Energy managers and energy auditors: Roles and responsibilities - Un – Benchmarking - Energy performance –BEE Regulations 2008	-			
UNIT III	ENERGY ACTION PLANNING AND FINANCING				9
policy and p	ment commitment and support – Assessing energy profile and forming base lanning – Evaluating energy performance – Recognize achievements – Man plementation - Financial analysis technique – cash flow – sensitivity and ris- ptions.	agen	nent	tool	
UNIT IV	ENERGY MANAGEMENT IN ELECTRICAL SYSTEMS				9
improvemer	illing – Electrical load management and Maximum demand control – Power at and benefits – Transformers – Distribution losses in industrial system – T ms – estimation of technical losses in distribution system – Commercial loss	& D		es in	
UNIT V	ENERGY EFFICIENT TECHNOLOGIES				9
efficiency -	ng opportunities in electric motors - Energy efficient motors – Rewinding ef Energy saving opportunities fans, blowers, pumping system, cooling towers ens and boilers - Lighting techniques: Natural, CFL, LED lighting sources.			-	ţy
	TOTAL: 45 P	ERIC	DDS		
COURSE O	UTCOMES:				

At the	end of the course, the students will be able to:
CO1:	Explain the present energy scenario and the energy policy.
CO2:	Summarize the energy audit methodology and the instruments used for audit.
CO3:	Describe the action plan involved in improving energy and finance profile.
CO4:	Explain the energy management in electrical systems.
CO5:	Categorize the different energy efficient technologies and energy saving opportunities.
REFE	RENCES:
1	"General Aspects of Energy Management and Energy Audit", Guide book-1 for NCE examination or EA and EM.
2	"Energy Efficiency in electrical utilities", Guide book-3 for NCE examination or EA and EM.
3	Barney L. Capehart, Wayne C. Turner, William J. Kennedy, "Guide to Energy Management", CRC press, Taylor & Francis group, Eighth Edition, 2016.
4	Eastop T.D and Croft D.R, "Energy Efficiency for Engineers and Technologists", Logman Scientific & Technical, 1990.
5	Amit K. Tyagi, "Handbook on Energy Audits and Management", TERI, 2003.
6	Anil Kumar, Om Prakash, Prashant Singh Chauhan "Energy Management: Conservation
	and Audits, CRC Press, 2020.

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	-	2	-	-
CO2	2	1	-	2	-	-
CO3	2	1	-	2	-	-
CO4	2	1	-	2	-	-
CO5	2	1	-	2	-	-
СО	2	1	-	2	-	-

				Cognitive	e Level	
	Total 2	Total 16	Remember	Understand	Apply	Analyse(An)
Unit No. and Title	Marks	Marks	(Kn)	(Un)	(Ay)	
			N	o. of Qns. (mar	ks) and CO	
				1(2) - CO1		
Unit-I: Energy	2	1 either or	1(2) - CO1	1 either or	-	-
Scenario				(16) - CO1		
				1(2) - CO2		
Unit-II: Energy	2	1 either or	1(2) - CO2	1 either or		-
Auditing				(16) - CO2		
Unit-III: Energy				1(2) - CO3		
Action Planning	2	1 either or	1(2) - CO3	1 either or	-	-
And Financing				(16) - CO3		
Unit IV: Energy				1(2) - CO4		
Management In	2	1 either or	1(2) - CO4	1 either or	-	-
Electrical Systems				(16) – CO4		
Unit-V: Energy				1(2) – CO5		
Efficient	2	1 either or	1(2) - CO5	1 either or	-	-
Technologies				(16) – CO5		
				5(2)		
T-4-1 O	10	5 either or	5(2)	5 either or	-	-
Total Qns.				(16)		
Total Marks	20	80	10	90	-	-
Weightage	20 %	80%	10%	90%	-	-
		We	eightage for C	COs		
	CO1	CO2	CO3	CO4		CO5
Total Marks	20	20	20	20		20
Weightage	20%	20%	20%	20%		20%

PE22343 ENERGY MANAGEMENT AND AUDITING

PE22344	HVDC AND FACTS	L	Т	Р	C
		3	0	0	3
COURSE O	BJECTIVES:	I			
• To e	mphasis the need for FACTS controllers.				
• To le	earn the characteristics, applications and modelling of series and shunt FACT	ΓS co	ontro	ollers	•
• To a	nalyse the interaction of different FACTS controller and perform control coo	ordin	atio	n.	
• To in	mpart knowledge on operation, modelling and control of HVDC link.				
• To p	erform steady state analysis of AC/DC system.				
UNIT I	INTRODUCTION				9
	ompensation at the mid-point of the line on power transfer- Need for FACTS	con	troll		
	CTS controllers-Need for HVDC system-MTDC system -Monopolar, Bipola eme- Layout of HVDC system (LCC, VSC)	ar an	d Ho	omop	ola
		ar an	d Ho	omop	ola:
HVDC Sche UNIT II Configuration	eme- Layout of HVDC system (LCC, VSC)	nalys	sis- C	Conc	9 epts
HVDC Sche UNIT II Configuration	eme- Layout of HVDC system (LCC, VSC) THYRISTOR BASED FACTS CONTROLLERS on of SVC- voltage regulation by SVC- Modelling of SVC for power flow an d Series Compensation – Operation of TCSC- Analysis of TCSC – Modellin	nalys ng of	sis- C	Conc	9 epts
HVDC Sche UNIT II Configuration of Controlled power flow UNIT III Choice of concentration characteristic DC link control	eme- Layout of HVDC system (LCC, VSC) THYRISTOR BASED FACTS CONTROLLERS on of SVC- voltage regulation by SVC- Modelling of SVC for power flow an d Series Compensation – Operation of TCSC- Analysis of TCSC – Modellin and stability studies. ANALYSIS OF LCC HVDC CONVERTERS AND HVDC SYSTEM CONT onverter configuration – Simplified analysis of Graetz circuit - Converter brid cs – characteristics of a twelve pulse converter- detailed analysis of converte trol – Converter control characteristics – System control hierarchy - Firing a extinction angle control - power control – Higher level controllers– Generat	nalys ng of RO dge ers- p ingle	sis- C TCS L princ	Conc SC fo	9 epts or 9
HVDC Sche UNIT II Configuration of Controlled power flow UNIT III Choice of concentration Choice of concentration DC link content Current and and filtering	eme- Layout of HVDC system (LCC, VSC) THYRISTOR BASED FACTS CONTROLLERS on of SVC- voltage regulation by SVC- Modelling of SVC for power flow an d Series Compensation – Operation of TCSC- Analysis of TCSC – Modellin and stability studies. ANALYSIS OF LCC HVDC CONVERTERS AND HVDC SYSTEM CONT onverter configuration – Simplified analysis of Graetz circuit - Converter brid cs – characteristics of a twelve pulse converter- detailed analysis of converte trol – Converter control characteristics – System control hierarchy - Firing a extinction angle control - power control – Higher level controllers– Generat	nalys ng of RO dge ers- p ingle	sis- C TCS L princ	Conc SC fo	9 epts or 9
HVDC Sche UNIT II Configuration of Controlled power flow UNIT III Choice of concentration Choice of concentration DC link content Current and and filtering UNIT IV Operation on stability stude	 Eme- Layout of HVDC system (LCC, VSC) THYRISTOR BASED FACTS CONTROLLERS on of SVC- voltage regulation by SVC- Modelling of SVC for power flow and d Series Compensation – Operation of TCSC- Analysis of TCSC – Modellin and stability studies. ANALYSIS OF LCC HVDC CONVERTERS AND HVDC SYSTEM CONT onverter configuration – Simplified analysis of Graetz circuit - Converter brid cs – characteristics of a twelve pulse converter- detailed analysis of converter trol – Converter control characteristics – System control hierarchy - Firing a extinction angle control - power control – Higher level controllers– Generat g. VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS f STATCOM and SSSC- Modelling of STATCOM and SSSC for power flow dies – Operation of Unified and Interline power flow controllers - Modelling wer flow and transient stability studies-Concepts of Power Oscillation Damp 	nalys ng of RO dge ers- p ingle ion o	sis- C TCS L orinc of ha d tra: JPFC	Conc SC fo iples trol - rmo	9 epts or 9 hics 9

Control and protection of MTDC systems-Converter model-converter control-Modelling of DC&AC network-Modelling of DC links-Solution of DC load flow-Solution of AC-DC power flow: Sequential and Simultaneous methods.

	TOTAL: 45 PERIODS
COUR	SE OUTCOMES:
At the	end of the course, the students will be able to:
CO1:	Explain the basics of power transmission networks and need for FACTS controllers.
CO2:	Design series and shunt compensating devices for power transfer enhancement.
CO3:	Explain AC/DC system coordinated control with FACTS and HVDC link.
CO4:	Understand the significance about different voltage source converter based FACTS controllers.
CO5:	Analyze the power flow in HVDC system.
REFE	RENCES:
1	K.R.Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International (P) Ltd., Publishers, New Delhi, Reprint 2008.
2	K.R.Padiyar, "HVDC Power Transmission Systems", New Age International (P) Ltd., New Delhi, 2002.
3	J.Arrillaga, "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983.
4	V.K.Sood, "HVDC and FACTS controllers- Applications of Static Converters in Power System", Kluwer Academic Publishers 2004.
5	Mohan Mathur, R., Rajiv. K. Varma, "Thyristor – Based Facts Controllers For Electrical Transmission Systems", IEEE press and John Wiley & Sons, Inc.

Course	PO1	PO2	PO3	PO4	PO5	PO6
Outcomes						
CO1	3	-	1	1	1	2
CO2	3	-	1	1	1	2
CO3	3	-	1	1	1	2
CO4	3	-	1	1	1	2
CO5	3	-	1	1	1	2
СО	3	-	1	1	1	2

Table of Specification for End Semester Question Paper

PE22344 HVDC AND FACTS

				Cognitiv	ve Level	
	Total 2	Total 16	Remember	Understand	Apply	Analyse(An)
Unit No. and Title	Marks	Marks	(Kn)	(Un)	(Ay)	Evaluate(Ev)
			N	o. of Qns. (mai	rks) and CO	1
				1 either or		
Unit-I: Introduction	2	1 either or	2(2) – CO1	(16) – CO1		-
				1(2) - CO2		
Unit-II: Thyristor Based	2	1 either or	1(2) - CO2	1 either or		-
Facts Controllers				(16) - CO2		
Unit-III: Analysis Of LCC HVDC				1 either or		
Converters and Hvdc System Control	2	1 either or	2(2) — CO3	(16) — CO3		-
Unit IV- Voltage				1 either or		
Source Converter Based Facts Controllers	2	I either or	2(2) - CO4	(16) — CO4		-
T 1 1 T				1(2) - CO5		
Unit-V: Power Flow Analysis In	2	I either or	1(2) – CO5	1 either or		-
Hvdc System And Controls				(16) — CO5		
				2(2)		
Total Qns.	10	5 either or	8(2)	5 either or	-	-
				(16)		
Total Marks	20	80	16	84	-	-
Weightage	20 %	80%	16%	84%	-	-
			eightage for C			
	CO1	CO2	CO3	CO4		CO5
Total Marks	20	20	20	20		20
Weightage	20%	20%	20%	20%		20%

	ENERGY STORAGE TECHNOLOGIES	L	L T		C
		3	0	0	3
COURSE (DBJECTIVES:				<u> </u>
• To :	understand the various types of energy storage Technologies				
• To :	analyze thermal storage system				
• To a	analyze different battery storage technologies				
• To a	analyze the thermodynamics of Fuel Cell				
• To :	study the various applications of energy storage systems				
UNIT I	INTRODUCTION				9
Necessity of	f energy storage – types of energy storage –energy storage technologies – Aj	pplic	atior	ıs.	1
UNIT II	THERMAL STORAGE SYSTEM				9
system – Pi	brage – Types – Modeling of thermal storage units – Simple water and rock bressurized water storage system – Modelling of phase change storage system storage units - Modelling using porous medium approach,				s,
	ELECTRICAL ENERGY STORAGE				9
Fundament battery, sto Nickel-Cad		cid, I	Lithi	um I	on
battery, sto	ELECTRICAL ENERGY STORAGE al concept of batteries – Measuring of battery performance, charging and dis rage density, energy density, and safety issues - Types of batteries: – Lead A	cid, I	Lithi	um I	on,
Fundament battery, sto Nickel-Cad Batteries. UNIT IV Fuel Cell – Hydrogen a	ELECTRICAL ENERGY STORAGE al concept of batteries – Measuring of battery performance, charging and dis rage density, energy density, and safety issues - Types of batteries: – Lead A mium, Zinc-Manganese dioxide - Mathematical Modelling for Lead Acid Ba	cid, I atterio	Lithi es –	um I Flow	on, v
Fundament battery, sto Nickel-Cad Batteries. UNIT IV Fuel Cell – Hydrogen a	ELECTRICAL ENERGY STORAGE al concept of batteries – Measuring of battery performance, charging and dis rage density, energy density, and safety issues - Types of batteries: – Lead A mium, Zinc-Manganese dioxide - Mathematical Modelling for Lead Acid Ba FUEL CELL History of Fuel cell, Principles of Electrochemical storage – Types: Hydroge ir cell, Hydrocarbon air cell, Alkaline fuel cell -Detailed analysis – Advantage	cid, I atterio	Lithi es –	um I Flow	on, v
Fundament battery, sto Nickel-Cad Batteries. UNIT IV Fuel Cell – Hydrogen a disadvantag UNIT V Flywheel, S	ELECTRICAL ENERGY STORAGE al concept of batteries – Measuring of battery performance, charging and dis rage density, energy density, and safety issues - Types of batteries: – Lead A mium, Zinc-Manganese dioxide - Mathematical Modelling for Lead Acid Ba FUEL CELL History of Fuel cell, Principles of Electrochemical storage – Types: Hydroge ir cell, Hydrocarbon air cell, Alkaline fuel cell -Detailed analysis – Advantages –Fuel Cell Thermodynamics.	cid, I atterio en ox ges a	Lithi es – yger nd	um I Flow	9 ls,
Fundament battery, sto Nickel-Cad Batteries. UNIT IV Fuel Cell – Hydrogen a disadvantag UNIT V Flywheel, S	ELECTRICAL ENERGY STORAGE al concept of batteries – Measuring of battery performance, charging and dis rage density, energy density, and safety issues - Types of batteries: – Lead A mium, Zinc-Manganese dioxide - Mathematical Modelling for Lead Acid Ba FUEL CELL History of Fuel cell, Principles of Electrochemical storage – Types: Hydroge ir cell, Hydrocarbon air cell, Alkaline fuel cell -Detailed analysis – Advantages –Fuel Cell Thermodynamics. ALTERNATE ENERGY STORAGE TECHNOLOGIES Super capacitors, Principles& Methods – Applications, Compressed air Energy	cid, I atterio en ox ges a gy sto	yger nd	um I Flow	9 Is,
Fundament battery, sto Nickel-Cad Batteries. UNIT IV Fuel Cell – Hydrogen a disadvantag UNIT V Flywheel, S Concept of	ELECTRICAL ENERGY STORAGE al concept of batteries – Measuring of battery performance, charging and dis rage density, energy density, and safety issues - Types of batteries: – Lead A mium, Zinc-Manganese dioxide - Mathematical Modelling for Lead Acid Ba FUEL CELL History of Fuel cell, Principles of Electrochemical storage – Types: Hydroge ir cell, Hydrocarbon air cell, Alkaline fuel cell -Detailed analysis – Advantages –Fuel Cell Thermodynamics. ALTERNATE ENERGY STORAGE TECHNOLOGIES Super capacitors, Principles& Methods – Applications, Compressed air Energy Hybrid Storage – Applications, Pumped Hydro Storage – Applications.	cid, I atterio en ox ges a gy sto	yger nd	um I Flow	9 Is,

r	
CO1:	Understand the physics of energy storage.
CO2:	Model the different energy technologies.
CO3:	Recognize the applications of various techniques.
CO4:	Design and analyze the energy storage technologies.
CO5:	Select and apply the appropriate technique based on the application.
REFE	RENCES:
1	James Larminie and Andrew Dicks, 'Fuel cell systems Explained', Wiley publications, 2003.
2	LunardiniV.J, "Heat Transfer in Cold Climates", John Wiley and Sons 1981.
3	Jiujun Zhang (Editor), Lei Zhang (Editor), Hansan Liu (Editor), Andy Sun (Editor), Ru-Shi Liu(Editor), "Electrochemical technologies for energy storage and conversion", Two Volume Set, Wiley publications, 2012.
4	Schmidt.F.W. and Willmott.A.J., "Thermal Storage and Regeneration", Hemisphere Publishing Corporation, 1981.
5	Luisa F. Cabeza (Editor), "Advances in Thermal Energy Storage Systems: Methods and Applications", Woodhead Publishers, 2020.
6	Ibrahim Dinçer and Marc A. Rosen, "Thermal Energy Storage Systems and Applications", Wiley Publishers, 2021.

Course	PO1	PO2	PO3	PO4	PO5	PO6
Outcomes						
CO1	3	-	1	1	1	2
CO2	3	-	1	1	1	2
CO3	3	-	1	1	1	2
CO4	3	-	1	1	1	2
CO5	3	-	1	1	1	2
CO	3	-	1	1	1	2

PE22351 ENERGY STORAGE TECHNOLOGIES

				Cognitiv	e Level	
	Total 2	Total 16	Remember	Understand (Un)	Apply (Ay)	Analyse(An)
Unit No. and Title	Marks	Marks	(Kn)	Evaluate(Ev)		
			N	o. of Qns. (mar $1/2$) CO1	rks) and CO	
				I(2) – CO1		
Unit-I:	2	1 either or	I(2) – CO1	1 either or	-	-
Introduction						
				(16) – CO1		
				1 either or		
Unit-II: Thermal	2	1 either or	2(2) - CO2	1(16) - CO2	-	
Storage System				$ 1(10) - CO_2 $		
				I(2) — CO3		
Unit-III:		1 1				
Electrical Energy	2	1 either or	I(2) - CO3	1 either or	-	-
Storage				(16) — CO3		
	2	I either or	2(2) - CO4	1 either or	_	_
Unit IV- Fuel Cell		I children on	2(2) - 004	(16) - CO4	_	
Unit-V: Alternate	2	I either or	2(2) – CO5	1 either or		
Energy Storage		I entiter or	2(2) - CO3	(16) - CO5	-	-
Technologies						
				2(2)		
	10	5 either or	8(2)	5 either or	_	_
Total Qns.			(2)			
				(16)		
	20	80	16	84	-	
Total Marks						
Weightage	20 %	80%	16%	84%	-	-
		We	eightage for (COs		
	CO1	CO2	CO3	CO4		CO5
Total Marks	20	20	20	20		20
Weightage	20%	20%	20%	20%		20%

COURSE OBJECTIVES: • To understand the working and characteristics of different types of batteries • To develop a battery pack • To understand battery modelling • To identify suitable state estimation algorithms • To study the architecture of battery management system UNIT I ADVANCED BATTERIES 9 Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics SOC, DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. NCR18650B specifications. 9 Batteries. NCR18650B specifications. 9 Battery Pack- design, sizing, calculations, flow chart, real and simulation Model. Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging. 9 UNIT II BATTERY MODELLING 9 Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks 9 SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. 9 UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS 9 Battery M	PE22352	BATTERY MANAGEMENT SYSTEM						
To understand the working and characteristics of different types of batteries To develop a battery pack To understand battery modelling To identify suitable state estimation algorithms To study the architecture of battery management system UNIT I ADVANCED BATTERIES 9 Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging, Characteristics SOC, DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. NCR18650B specifications. UNIT II BATTERY PACK 9 Battery Pack- design, sizing, calculations, flow chart, real and simulation Model. Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging. UNIT II BATTERY MODELLING 9 Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks UNIT IV BATTERY STATE ESTIMATION 9 SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS 9 Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design.			3	0	0	3		
To develop a battery pack To understand battery modelling To identify suitable state estimation algorithms To study the architecture of battery management system UNIT I ADVANCED BATTERIES 9 Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics SOC, DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. NCR18650B specifications. UNIT II BATTERY PACK 9 Battery Pack- design, sizing, calculations, flow chart, real and simulation Model. Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging. UNIT III BATTERY MODELLING 9 Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks UNIT IV BATTERY STATE ESTIMATION 9 SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS 9 Battery Management System-need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design.	COURSE OBJE	CTIVES:				<u> </u>		
To understand battery modelling To identify suitable state estimation algorithms To study the architecture of battery management system INIT I ADVANCED BATTERIES 9 ILi-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics SOC, DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. NCR18650B specifications. UNIT II BATTERY PACK 9 Battery Pack- design, sizing, calculations, flow chart, real and simulation Model. Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging. UNIT II BATTERY MODELLING 9 Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks UNIT IV BATTERY STATE ESTIMATION 9 SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS 9 Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design.	• To under	stand the working and characteristics of different types of batteries						
To identify suitable state estimation algorithms To study the architecture of battery management system UNIT I ADVANCED BATTERIES 9 Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics SOC, DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. NCR 18650B specifications. UNIT II BATTERY PACK 9 Battery Pack- design, sizing, calculations, flow chart, real and simulation Model. Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging. UNIT II BATTERY MODELLING 9 Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks UNIT IV BATTERY STATE ESTIMATION 9 SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS 9 Battery Management System - need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design.	• To devel	op a battery pack						
To study the architecture of battery management system UNIT I ADVANCED BATTERIES 9 Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics SOC, DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. NCR18650B specifications. UNIT II BATTERY PACK 9 Battery Pack- design, sizing, calculations, flow chart, real and simulation Model. Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging. UNIT II BATTERY MODELLING 9 Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks UNIT IV BATTERY STATE ESTIMATION 9 SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS 9 Battery Management System - need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design.	• To under	stand battery modelling						
UNIT I ADVANCED BATTERIES 9 Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics SOC, DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. NCR18650B specifications. 9 UNIT II BATTERY PACK 9 Battery Pack- design, sizing, calculations, flow chart, real and simulation Model. Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging. 9 Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks 9 SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. 9 Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-QI Battery Monitor IC- CC2662R-QI Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design. 9	• To identi	fy suitable state estimation algorithms						
Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics SOC, DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. NCR18650B specifications. UNIT II BATTERY PACK 9 Battery Pack- design, sizing, calculations, flow chart, real and simulation Model. Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging. 9 Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. 9 Battery Modelling Software/simulation frameworks 9 BATTERY STATE ESTIMATION 9 SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. 9 Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design. 9	• To study	the architecture of battery management system						
DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. NCR18650B specifications. UNIT II BATTERY PACK 9 Battery Pack- design, sizing, calculations, flow chart, real and simulation Model. Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging. 9 UNIT III BATTERY MODELLING 9 Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. 9 Battery Modelling Software/simulation frameworks 9 UNIT IV BATTERY STATE ESTIMATION 9 SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. 9 Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design. 9	UNIT I	ADVANCED BATTERIES				9		
Battery Pack- design, sizing, calculations, flow chart, real and simulation Model. Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging. UNIT III BATTERY MODELLING 9 Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks 9 SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. 9 Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design. 9	DOD, SOH. Bal	ancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and			s SO	C,		
definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging. 9 UNIT III BATTERY MODELLING 9 Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks 9 UNIT IV BATTERY STATE ESTIMATION 9 SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. 9 Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design. TOTAL: 45 PERIODS	UNIT II	BATTERY PACK				9		
ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks UNIT IV BATTERY STATE ESTIMATION 9 SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. 9 UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS 9 Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design. TOTAL: 45 PERIODS		Smart charging.						
SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS 9 Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery 9 Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex 9 RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model 9 Based Design. 10	ECM Compariso	ons- Rint model, Thevenin model, PNGV model. State space Models-Int				el.		
voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms. 9 UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS 9 Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design. TOTAL: 45 PERIODS	UNIT IV	BATTERY STATE ESTIMATION				9		
Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design. TOTAL: 45 PERIODS	voltage, Electror	notive force, AC impedance, Ah counting, Neural networks, Neuro-fuzz				d		
Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design. TOTAL: 45 PERIODS	UNIT V	BMS ARCHITECTURE AND REAL TIME COMPONENTS				9		
	Monitor IC- CC	2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-	Flex		-	lel		
COURSE OUTCOMES:		TOTAL	: 45	PEF	RIOI)S		
	COURSE OUTC	OMES:						

At the e	end of the course, the students will be able to:
CO1:	Explain different Li-ion Batteries performance.
CO2 :	Develop a Battery Pack and make related calculations.
CO3:	Demonstrate a Battery Model or Simulation.
CO4:	Identify State-of-Charges in a Battery Pack.
CO5:	Illustrate different BMS architectures during real world usage.
REFER	ENCES:
1.	Jiuchun Jiang and Caiping Zhang, "Fundamentals and applications of Lithium-Ion batteriesin
	Electric Drive Vehicles", Wiley, 2015.
2.	Davide Andrea, "Battery Management Systems for Large Lithium-Ion Battery Packs" ARTECH
	House, 2010.
3.	Panasonic NCR18650B- Data Sheet
4.	bq76PL536A-Q1- IC Data Sheet
5.	CC2662R-Q1- IC Data Sheet

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	-	3	-	-
CO2	-	-	2	3	2	1
CO3	-	-	-	3	-	-
CO4	-	-	2	3	2	1
CO5	-	-	_	3	-	_
CO	-	-	2	3	2	1

				Cogniti	ve Level	
	Total 2	Total 16	Remember	Understand	Apply	Analyse(An)
Unit No. and Title	Marks	Marks	(Kn)	(Un)	(Ay)	Evaluate(Ev)
			N	o. of Qns. (ma	rks) and CO	
Unit-I: Advanced Batteries	l	1 either or	2(2) – CO1	1 either or (16) – CO1	-	-
Unit-II: Battery Pack	2	1 either or	2(2) - CO2	-	1 either or (16) — CO2-	-
Unit-III: Battery Modelling	2	1 either or	2(2) — CO3	1 either or (16) — CO3	-	-
Unit IV- Battery State Estimation	2	1 either or	2(2) - CO4	-	1 either or (16) — CO4	
Unit-V: BMS Architecture And Real Time Components	2	1 either or	2(2) – CO5	1 either or (16) — CO5	-	-
Total Qns.	10	5 either or	10(2)	3 either or (16)	2 either or (16)	-
Total Marks	20	80	20	48	32	-
Weightage	20 %	80%	20%	48%	32%	-
	ı		ightage for C		<u>.</u>	<u>.</u>
	CO1	CO2	CO3	CO4	4	CO5
Total Marks	20	20	20	20		20
Weightage	20%	20%	20%	20%)	20%

PE22352 BATTERY MANAGEMENT SYSTEM

	PYTHON PROGRAMMING FOR MACHINE LEARNING	L	Т	Р	C
		3	0	0	3
COURSE OBJI	ECTIVES:				1
	erstand and be able to use the basic programming principles such as data type nals, loops, recursion and function calls.	bes, va	riabl	e,	
• To learn and ima	how to use basic data structures such as List, Dictionary and be able to mages.	nipula	te te.	xt fil	es
• To mak	e the students familiar with machine learning concepts & techniques.				
	erstand the process and will acquire skills necessary to effectively attempt a and implement it using Python.	machi	ne le	earni	ng
	lve Discussions/ Practice/Exercise onto revising & familiarizing the concepted research/employability skills.	ts acq	uirec	l for	
UNIT I	INTRODUCTION TO MACHINE LEARNING AND PYTHON				9
•	ramming Syntax: Variable Types, Basic Operators, Reading Input from Use Set Conditional Statements.	er, Arr	ays/I	_1st,	
UNIT II	Set Conditional Statements. PYTHON FUNCTIONS AND PACKAGES				9
UNIT II File Handling: Handling in Py and exploring v Arrays, Array i	Set Conditional Statements.	Iodule he Nu Ioining	s, Pa mpy g Nu	ckag Libr mpy	ge ary
UNIT II File Handling: Handling in Py and exploring v Arrays, Array i	Set Conditional Statements. PYTHON FUNCTIONS AND PACKAGES Reading and Writing Data, Errors and Exceptions Handling, Functions & M. thon, Pip Installation & Exploring Functions in python package, Installing to arious operations on Arrays: Indexing, Slicing, MultiDimensional Arrays, J. intersection and Difference, Saving and Loading Numpy Arrays, Introduction	Iodule he Nu Ioining	s, Pa mpy g Nu	ckag Libr mpy	ge ary
UNIT II File Handling: Handling in Py and exploring v Arrays, Array i Oriented Progra UNIT III Description of Dataset, Introdu understanding, Polynomial Re	Set Conditional Statements. PYTHON FUNCTIONS AND PACKAGES Reading and Writing Data, Errors and Exceptions Handling, Functions & M. thon, Pip Installation & Exploring Functions in python package, Installing to arrious operations on Arrays: Indexing, Slicing, MultiDimensional Arrays, J. Intersection and Difference, Saving and Loading Numpy Arrays, Introduction amming with Python.	Iodule he Nu Ioining on to C Boston n with ur Regu	s, Pa mpy g Nu bjec	Libr mpy t using ytica	ge ary 9 g 11 nd
UNIT II File Handling: Handling in Py and exploring v Arrays, Array i Oriented Progra UNIT III Description of Dataset, Introdu understanding,	Set Conditional Statements.	Iodule he Nu Ioining on to C Boston n with ur Regu	s, Pa mpy g Nu bjec	Libr mpy t using ytica	ge ary 9 g 11 nd

Algorithms & Techniques, K-means Algorithm, Introduction to Python Visualization using Matplotlib: Plotting 2- dimensional, 3-dimensional graphs; formatting axis values; plotting multiple rows of data in same graph, Implementation of K-means Algorithm.

UNI	ΓV	INTRODUCTION TO NEURAL NETWORKS AND EMBEDDED MACHINE
		LEARNING

Introduction to Neural Networks & Significance, Neural Network Architecture, Single Layer Perceptron & MultiLayer Perceptron (MLP), Commonly Used Activation Functions, Forward Propagation, Back Propagation, and Epochs, Gradient Descent, Introduction to Convolution Neural Networks, Implementation of Digit Classification using MNIST Dataset ML for Embedded Systems: Comparison with conventional ML, Challenges & Methods for Overcoming TinyML and Tensorflow Lite for Microcontrollers.

TOTAL: 45 PERIODS

9

COURSE	OUTCOMES:
At the end	of the course, the students will be able to:
CO1:	Develop skill in system administration and network programming by learning Python.
CO2:	Demonstrating understanding in concepts of python and its implementation using Python.
CO3:	Relate to use Python's highly powerful processing capabilities for primitives, modeling.
CO4:	Improved Employability and entrepreneurship capacity due to knowledge up gradation on recent trends in embedded systems design.
CO5:	Apply the concepts acquired over the advanced research/employability skills Tentative.
REFEREN	ICES:
1	Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.
2	Zelle, John "M. Python Programming: An Introduction to Computer Science.", Franklin Beedle& Associates, 2003.
3	Andreas C. Müller, Sarah Guido, "Introduction to Machine Learning with Python", O'Reilly,2016
4	Sebastian Raschka, VahidMirjalili, "Python Machine Learning - Third Edition", Packt, December 2019
5	Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill, 2018.
6	Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.

Course	PO1	PO2	PO3	PO4	PO5	PO6
Outcomes						

CO1	-	-	1	2	-	-
CO2	-	-	-	-	-	-
CO3	-	-	1	-	-	-
CO4	-	-	-	1	-	-
CO5	-	-	-	1	-	-
	_	_	1	1	_	_

PE22353 PYTHON PROGRAMMING FOR MACHINE LEARNING

			Cognitive Level						
	Total 2	Total 16	Remember	Understand		Analyse(An)			
Unit No. and Title	Marks	Marks	(Kn)	(Un)	(Ay)				
			No. of Qns. (marks) and CO						
Unit-I:	2	1 oithor or	2(2) – CO1	1 either or					
Introduction to Machine Learning and Python	2	1 either or	2(2) - COI	(16) – CO1		-			
Unit-II: Python	2	1 1		1 either or					
Functions and Packages	2	1 either or	2(2) - CO2	(16) — CO2		-			
Unit-III:					1 either or				
Implementation of	2	1 either or	2(2) - CO3	-	(16) — CO3	-			
Machine Learning Using Python					(10) - 003				
Unit IV-			I(2) - CO4	I(2) — CO4	1 either or				
Classification and	2	I either or			(16) — CO4	-			
Clustering Concepts of Ml					(10) - 004				
Unit-V:					1 either or				
Classification and	2	I either or	r I(2) – CO5	I(2) - COC	(16) — CO5	-			
Clustering Concepts of MI					(10) - 003				
				2(2)					
	10	5 either or	8(2)	2 either or	3 either or	_			
Total Qns.			- ()	(10)	(16)				
				(16)					
Total Marks	20	80	16	36	48	-			
Weightage	20 %	80%	16%	36%	48%	-			
		We	eightage for C	COs					
	CO1	CO2	CO3	CO4		CO5			
Total Marks	20	20	20	20		$\frac{20}{20\%}$			
Weightage	20%	20%	20%	20%)	20%			

PE22354	SMART GRID	L	T	P	C
		3	0	0	3
COURSE OB	JECTIVES:	I		<u> </u>	
• To ex	plain the Challenges and benefits of smart grid				
• To ed	ucate on the different smart grid technologies.				
• To ed	ucate on smart meters and advanced metering infrastructure				
• To ex	plain the power quality issues in Smart Grid.				
• To ex	plain the communication networks for Smart Grid applications				
UNIT I	INTRODUCTION TO SMART GRID				9
opportunities Micro grid ar	Electric Grid, Concept, Definitions and Need for Smart Grid, Smart grid dri , challenges and benefits, Difference between conventional & Smart Grid, C nd Smart grid, Present development & International policies in Smart Grid, S Power Distribution Utility in India – Case Study.	Comp	paris	on of	
UNIT II	SMART GRID TECHNOLOGIES				9
Feeder Autor and control, l	Drivers, Smart Integration of energy resources, Smart substations, Substation nation ,Transmission systems: EMS, FACTS and HVDC, Wide area monito Distribution systems: DMS, Outage management, Plug in Hybrid Electric Venicle and Vehicle to Grid charging concepts.	ring	, Pro	tecti	on
UNIT III	SMART METERS AND ADVANCED METERING INFRASTRUCTURE				9
protocols, sta their applicat	to Smart Meters, Advanced Metering infrastructure (AMI) drivers and benefindards and initiatives, AMI needs in the smart grid, Phasor Measurement Usion for monitoring & protection. Demand side management and demand resing and Time of Use, Real Time Pricing, Peak Time Pricing.	nit(F	PMU) &	ms,
UNIT IV	POWER QUALITY MANAGEMENT IN SMART GRID				9
-	y & EMC in Smart Grid, Power Quality issues of Grid connected Renewabl ver Quality Conditioners for Smart Grid, Web based Power Quality monitori t.		0.		.
UNIT V	HIGH PERFORMANCE COMPUTING FOR SMART GRID APPLICATI	ONS	5		9
Network (WA	and Standards -Local Area Network (LAN), House Area Network (HAN), V AN), Broadband over Power line (BPL), PLC, Zigbee, GSM, IP based Proto and CLOUD Computing, Cyber Security for Smart Grid.) of

TOTAL	PERIODS:45
-------	------------

	IUIAL PERIODS:45
COU	RSE OUTCOMES:
At the	e end of the course, the students will be able to:
CO1	Explain the challenges and benefits of smart grid.
CO2	Illustrate the different smart grid technologies.
CO3	Explain the necessity of smart meter and AMI.
CO4	Demonstrate the power quality management in Smart Grid.
CO5	Illustrate the different communication networks for smart grid applications
REFF	ERENCES:
1	Stuart Borlase 'Smart Grid: Infrastructure, Technology and Solutions', CRC Press 2012.
2	Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, 'Smart Grid: Technology and Applications', Wiley, 2012.
3	Mini S. Thomas, John D McDonald, 'Power System SCADA and Smart Grids', CRC Press,2015.
4	Kenneth C.Budka, Jayant G. Deshpande, Marina Thottan, 'Communication Networks for Smart Grids', Springer, 2014
5	Smart Grid Fundamentals of Design and Analysis, James Momoh, IEEE press, A John Wiley & Sons, Inc., Publication.
L	

Course			PC)		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	1	-	-	-	-
CO2	-	1	-	1	1	-
CO3	-	1	-	-	-	-
CO4	1	1	-	1	1	-
CO5	-	1	_	1	_	-
СО	1	1	-	1	1	-

PE22354 SMART GRID

				Cognitiv	e Level	
	Total 2	Total 16	Remember	Understand	Apply	Analyse(An)
Unit No. and Title	Marks	Marks	(Kn)	(Un)	(Ay)	Evaluate(Ev)
			N	o. of Qns. (mar	rks) and CO	
Unit-I:				1 either or		
Introduction to Smart Grid	2	1 either or	2(2) – CO1	(16) – CO1	-	-
				1 either or		
Unit-II: Smart Grid Technologies	2	1 either or	2(2) - CO2	(16) — CO2	-	-
Unit-III: Smart Meters and		4 • 4		1 either or		
Advanced Metering Infrastructure	2	1 either or	2 (2) — CO3	(16) — CO3	-	-
Unit IV- Power				1 either or		
Quality	2	I either or	2(2) - CO4		-	-
Management in Smart Grid				(16) — CO4		
Unit-V: High				1 either or		
Performance Computing for Smart Grid Applications	2	I either or	2(2) – CO5	(16) — CO4	-	-
				5 either or		
Total Qns.	10	5 either or	10(2)	(16)	-	-
Total Marks	20	80	20	80	-	-
Weightage	20 %	80%	20%	80%	-	-
		We	eightage for (COs		
	CO1	CO2	CO3	CO4		CO5
Total Marks	20	20	20	20		20
Weightage	20%	20%	20%	20%		20%

AC22101	ENGLISH FOR RESEARCH PAPER WRITING	L	Т	Р	С
		2	0	0	0
COURSE	OBJECTIVES:				
• Tead	th how to improve writing skills and level of readability				
• Tell	about what to write in each section				
• Sum	marize the skills needed when writing a title				
	the skills needed when writing the Conclusion				
• Ensu	are the quality of paper at very first-time submission				
UNIT I	INTRODUCTION TO RESEARCH PAPER WRITING				6
-	and Preparation, Word Order, Breaking up long sentences, Structuring Being Concise and Removing Redundancy, Avoiding Ambiguity and Vague	-	-	phs	and
UNIT II	PRESENTATION SKILLS				6
	Who Did What, Highlighting Your Findings, Hedging and Criticizing, , Sections of a Paper, Abstracts, Introduction.	Para	phra	sing	and
UNIT III	TITLE WRITING SKILLS				6
Key skills	are needed when writing a Title, key skills are needed when writing an Abst	ract,	key	skills	are
-	nen writing an Introduction, skills needed when writing a Review of the Li		-		
Results, D	iscussion, Conclusions, The Final Check.				
UNIT IV	RESULT WRITING SKILLS				6
	needed when writing the Methods, skills needed when writing the Results	, skil	ls ar	e nee	eded
when writ	ing the Discussion, skills are needed when writing the Conclusions.				
UNIT V	VERIFICATION SKILLS				6
Useful phr submissio	ases, checking Plagiarism, how to ensure paper is as good as it could possibly	y be	the fi	rsttir	ne
3001113310	TOTA	\L:	30 PI	ERIC	DDS
COURSE	OUTCOMES:				
At the end	d of the course, the students will be able to:				
CO1:	Understand that how to improve your writing skills and level of readability.				
CO2:	Learn about what to write in each section.				
CO3:	Understand the skills needed when writing a title.				
CO4:	Understand the skills needed when writing the conclusion.				
CO5:	Ensure the good quality of paper at very first-time submission.				
REFERE					
1. Adr	an Wallwork, English for Writing Research Papers, Springer New York Dor	drecl	nt He	idelb	erg
	don, 2011.	<u>.</u>			
Long2.Gold					

AC22102	CONSTITUTION OF INDIA	L	Т	Р	C
		2	0	0	0
COURSE O	BJECTIVES:		•	•	
• Unde	rstand the premises informing the twin themes of liberty and freedom from	n a	civi	l rig	ghts
persp	ective.				
• To a	ddress the growth of Indian opinion regarding modern Indian intellectuals	° cc	nsti	tutio	na
	and entitlement to civil and economic rights as well as the emergence nati	on	hood	1 in	the
	years of Indian nationalism.				
	address the role of socialism in India after the commencement of	the	Bo	lshe	vil
	lutionin1917 and its impact on the initial drafting of the Indian Constitution.				5
UNIT I	HISTORY OF MAKING OF THE INDIAN CONSTITUTION				5
History, Dra	fting Committee, (Composition & Working)				5
UNIT II	PHILOSOPHY OF THE INDIAN CONSTITUTION				2
Preamble, Sa	llient Features				
UNIT III	CONTOURS OF CONSTITUTIONAL RIGHTS AND DUTIES				5
Fundamenta	Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right	ght	to F	reed	on
of Religion,	Cultural and Educational Rights, Right to Constitutional Remedies, Directiv	e P	rinc	iples	5 0
State Policy,	Fundamental Duties.				
UNIT IV	ORGANS OF GOVERNANCE				5
		ns,	Exe	ecuti	
Parliament,	Composition, Qualifications and Disqualifications, Powers and Functio				ve
Parliament, President,					ve
Parliament, President, Qualification	Composition, Qualifications and Disqualifications, Powers and Functio Governor, Council of Ministers, Judiciary, Appointment and Transfe as, Powers and Functions				ive ges
Parliament, President, Qualification	Composition, Qualifications and Disqualifications, Powers and Functio Governor, Council of Ministers, Judiciary, Appointment and Transfers, Powers and Functions LOCAL ADMINISTRATION	er	of	Judg	ges 5
Parliament, President, Qualification UNIT V District's Ad	Composition, Qualifications and Disqualifications, Powers and Function Governor, Council of Ministers, Judiciary, Appointment and Transfers, Powers and Functions LOCAL ADMINISTRATION Imministration head: Role and Importance Municipalities: Introduction, May	er /or	of and	Judg role	ges 5
Parliament, President, Qualification UNIT V District's Ad Elected Rep	Composition, Qualifications and Disqualifications, Powers and Functio Governor, Council of Ministers, Judiciary, Appointment and Transfers, Powers and Functions LOCAL ADMINISTRATION	er vor Zil	of and a Pa	Judg role	ges 5 0 yat
Parliament, President, Qualification UNIT V District's Ad Elected Rep Elected offic	Composition, Qualifications and Disqualifications, Powers and Function Governor, Council of Ministers, Judiciary, Appointment and Transfers, Powers and Functions LOCAL ADMINISTRATION Imministration head: Role and Importance Municipalities: Introduction, May resentative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI:	or Zil	of and a Pa ganiz	Judg role chay zatio	ive ges 5 vat na
Parliament, President, Qualification UNIT V District's Ad Elected Rep Elected offic	Composition, Qualifications and Disqualifications, Powers and Function Governor, Council of Ministers, Judiciary, Appointment and Transfers, Powers and Functions LOCAL ADMINISTRATION Imministration head: Role and Importance Municipalities: Introduction, May resentative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI: cials and their roles, CEO Zila Pachayat: Position and role. Block level: ifferent departments), Village level: Role of Elected and Appointed officials.	or Zil	of and a Pa ganiz	Judg role chay zatio	ive ges 5 vat na
Parliament, President, Qualification UNIT V District's Ad Elected Rep Elected offic Hierarchy(D	Composition, Qualifications and Disqualifications, Powers and Function Governor, Council of Ministers, Judiciary, Appointment and Transfers, Powers and Functions LOCAL ADMINISTRATION Imministration head: Role and Importance Municipalities: Introduction, May resentative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI: cials and their roles, CEO Zila Pachayat: Position and role. Block level: ifferent departments), Village level: Role of Elected and Appointed officials, mocracy.	or Zil	of and a Pa ganiz	Judg role chay zatio	ive ges 5 0 yat
Parliament, President, Qualification UNIT V District's Ad Elected Rep Elected offic Hierarchy(D grass root de UNIT VI	Composition, Qualifications and Disqualifications, Powers and Function Governor, Council of Ministers, Judiciary, Appointment and Transfer as, Powers and Functions LOCAL ADMINISTRATION Imministration head: Role and Importance Municipalities: Introduction, May resentative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI: cials and their roles, CEO Zila Pachayat: Position and role. Block level: ifferent departments), Village level: Role of Elected and Appointed officials, mocracy. ELECTION COMMISSION	or Zil	of and a Pa ganiz port	Judg role chay zatio	ses 5 7 7 7 7 7 7 7 7
Parliament, President, Qualification UNIT V District's Ad Elected Rep Elected offic Hierarchy(D grass root de UNIT VI Election C	Composition, Qualifications and Disqualifications, Powers and Function Governor, Council of Ministers, Judiciary, Appointment and Transfers, Powers and Functions LOCAL ADMINISTRATION Imministration head: Role and Importance Municipalities: Introduction, May resentative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI: cials and their roles, CEO Zila Pachayat: Position and role. Block level: ifferent departments), Village level: Role of Elected and Appointed officials, mocracy.	or Zil Org Im	of and a Pa ganiz port	Judg role chay zatio ance	ses ses yat na e o
Parliament, President, Qualification UNIT V District's Ad Elected Rep Elected offic Hierarchy(D grass root de UNIT VI Election C	Composition, Qualifications and Disqualifications, Powers and Function Governor, Council of Ministers, Judiciary, Appointment and Transfer as, Powers and Functions LOCAL ADMINISTRATION Imministration head: Role and Importance Municipalities: Introduction, May resentative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI: cials and their roles, CEO Zila Pachayat: Position and role. Block level: ifferent departments), Village level: Role of Elected and Appointed officials, mocracy. ELECTION COMMISSION ommission: Role and Functioning. Chief Election Commissioner ers - Institute and Bodies for the welfare of SC/ST/OBC and women.	vor Zil Org Im and	and a Pa ganiz port	role chay zatio ance	ses 5 7 7 7 7 7 7 7 7
Parliament, President, Qualification UNIT V District's Ad Elected Rep Elected offic Hierarchy(D grass root de UNIT VI Election C Commission	Composition, Qualifications and Disqualifications, Powers and Functio Governor, Council of Ministers, Judiciary, Appointment and Transfe as, Powers and Functions LOCAL ADMINISTRATION Imministration head: Role and Importance Municipalities: Introduction, May resentative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI: cials and their roles, CEO Zila Pachayat: Position and role. Block level: ifferent departments), Village level: Role of Elected and Appointed officials, mocracy. ELECTION COMMISSION ommission: Role and Functioning. Chief Election Commissioner ers - Institute and Bodies for the welfare of SC/ST/OBC and women. TOTAL:	vor Zil Org Im and	and a Pa ganiz port	role chay zatio ance	s o yat a o 5 io
Parliament, President, Qualification UNIT V District's Ad Elected Rep Elected offic Hierarchy(D grass root de UNIT VI Election C Commission	Composition, Qualifications and Disqualifications, Powers and Function Governor, Council of Ministers, Judiciary, Appointment and Transfers, Powers and Functions LOCAL ADMINISTRATION Imministration head: Role and Importance Municipalities: Introduction, May resentative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI: tials and their roles, CEO Zila Pachayat: Position and role. Block level: ifferent departments), Village level: Role of Elected and Appointed officials, mocracy. ELECTION COMMISSION ommission: Role and Functioning. Chief Election Commissioner ers - Institute and Bodies for the welfare of SC/ST/OBC and women. TOTAL: UTCOMES:	vor Zil Org Im and	and a Pa ganiz port	role chay zatio ance	s o yat a o 5 io
Parliament, President, Qualification UNIT V District's Ad Elected Rep Elected offic Hierarchy(D grass root de UNIT VI Election C Commission COURSE O At the end o	Composition, Qualifications and Disqualifications, Powers and Function Governor, Council of Ministers, Judiciary, Appointment and Transfers, Powers and Functions LOCAL ADMINISTRATION Imministration head: Role and Importance Municipalities: Introduction, May resentative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI: cials and their roles, CEO Zila Pachayat: Position and role. Block level: ifferent departments), Village level: Role of Elected and Appointed officials, mocracy. ELECTION COMMISSION commission: Role and Functioning. Chief Election Commissioner ers - Institute and Bodies for the welfare of SC/ST/OBC and women. TOTAL: UTCOMES: f the course, the students will be able to:	or Zil Org Im and 30	of and a Pa ganiz port d E PE I	role chay zatio ance Elect	yat ion 5 ion D
Parliament, President, Q Qualification UNIT V District's Ad Elected Rep Elected offic Hierarchy(D grass root de UNIT VI Election C Commission COURSE O At the end o	Composition, Qualifications and Disqualifications, Powers and Function Governor, Council of Ministers, Judiciary, Appointment and Transfers, Powers and Functions LOCAL ADMINISTRATION Imministration head: Role and Importance Municipalities: Introduction, May resentative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI: tials and their roles, CEO Zila Pachayat: Position and role. Block level: ifferent departments), Village level: Role of Elected and Appointed officials, mocracy. ELECTION COMMISSION ommission: Role and Functioning. Chief Election Commissioner ers - Institute and Bodies for the welfare of SC/ST/OBC and women. TOTAL: UTCOMES:	or Zil Org Im and 30	of and a Pa ganiz port d E PE I	role chay zatio ance Elect	yat ion 5 ion D
Parliament, President, Q Qualification UNIT V District's Ad Elected Rep Elected offic Hierarchy(D grass root de UNIT VI Election C Commission COURSE O At the end o CO1: ar	Composition, Qualifications and Disqualifications, Powers and Function Governor, Council of Ministers, Judiciary, Appointment and Transferster, Powers and Functions LOCAL ADMINISTRATION Iministration head: Role and Importance Municipalities: Introduction, May resentative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI: cials and their roles, CEO Zila Pachayat: Position and role. Block level: ifferent departments), Village level: Role of Elected and Appointed officials, mocracy. ELECTION COMMISSION ommission: Role and Functioning. Chief Election Commissioner ers - Institute and Bodies for the welfare of SC/ST/OBC and women. TOTAL: UTCOMES: f the course, the students will be able to: iscuss the growth of the demand for civil rights in India for the bulk of Ind	or Zil Org Im and 30	and a Pa ganiz port d E PEI	Judg role chay zatio ance Elect RIO	yatina ioi 5 ioi D

	conceptualization of social reforms leading to revolution in India.
	Discuss the circumstances surrounding the foundation of the Congress Socialist Party[CSP]
CO3:	under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct
	elections through adult suffrage in the Indian Constitution.
CO4:	Discuss the passage of the Hindu Code Bill of 1956.
REFERI	ENCES:
1	The Constitution of India,1950(Bare Act),Government Publication.
2	Dr.S.N.Busi, Dr.B. R.Ambedkar framing of Indian Constitution, 1st Edition, 2015.
3	M.P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis,2014.
4	D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

AC22201	DISASTER MANAGEMENT	L	Τ	P	С
		2	0	0	0
COURSEO	BJECTIVES:				
• Sum	narize basics of disaster				
• Expl	ain a critical understanding of key concepts in disaster risk reduction a	and	hum	anita	rian
respo	nse				
• Illust	rate disaster risk reduction and humanitarian response policy and practi	ce fi	rom	mult	iple
persp	ectives				
	ribe an understanding of standards of humanitarian response and pract fic types of disasters and conflict situations	ical	rele	vance	e in
• Deve	lop the strengths and weaknesses of disaster management approaches				
UNITI	INTRODUCTION				6
Disaster: De	finition, Factors and Significance; Difference between Hazard And Disa	ster;	Nat	ural	and
Manmade D	sasters: Difference, Nature, Types and Magnitude.				
UNIT II	REPERCUSSIONS OF DISASTERS AND HAZARDS				6
Economic D	amage, Loss of Human and Animal Life, Destruction Of Ecosystem. N	Vatur	al D	Disas	ters:
	Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines,				
	Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil S	Slick	s Ar	id Sp	ills,
Outbreaks O	f Disease And Epidemics, War And Conflicts.				
UNIT III	DISASTER PRONE AREAS IN INDIA				6
•	smic Zones; Areas Prone To Floods and Droughts, Landslides And Avaland				
•	and Coastal Hazards with Special Reference To Tsunami; Post-Disas	ter	Dise	ases	and
Epidemics					
UNIT IV	DISASTER PREPAREDNESS AND MANAGEMENT				6
	: Monitoring Of Phenomena Triggering a Disaster or Hazard; Eva				
	of Remote Sensing, Data from Meteorological And Other Agencies,	Me	dia	Repo	orts:
	al and Community Preparedness.				
UNIT V	RISK ASSESSMENT				6
	k: Concept and Elements, Disaster Risk Reduction, Global and Natior				
	echniques of Risk Assessment, Global Co-Operation in Risk Assessme	nt a	nd V	Warn	ing,
People's Par	ticipation in Risk Assessment. Strategies for Survival				
	ΤΟΤΑ	L: 3	0 PI	ERIC)DS
COUDCE					
	UTCOMES: f the course, the students will be able to:				

CO1:	Ability to summarize basics of disaster
CO2:	Ability to explain a critical understanding of key concepts in disaster risk reduction and
CO2:	humanitarian response
CO3:	Ability to illustrate disaster risk reduction and humanitarian response policy and practice from
005:	multiple perspectives
CO4:	Ability to describe an understanding of standards of humanitarian response and practical
C04:	relevance in specific types of disasters and conflict situations
CO5:	Ability to develop the strengths and weaknesses of disaster management approaches
REFERE	INCES:
1.	Goel S. L., Disaster Administration and Management Text and Case Studies", Deep & Deep
1.	Publication Pvt. Ltd., New Delhi, 2009.
2.	NishithaRai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies",
۷.	New Royal book Company, 2007.
3.	Sahni, PradeepEt.Al.," Disaster Mitigation Experiences and Reflections", PrenticeHall of
э.	India, New Delhi, 2001.

AC22202	நற்றமிழ் இலக்கியம்	L	Т	Р	С
		2	0	0	0
UNITI	சங்க இலக்கியம்				6
- எழுத் 2. அகநாஓ - இயற் 3. குறிஞ்ச் 4. புறநானு	்துவக்க நூல் தொல்காப்பியம் 5து, சொல், பொருள் றூறு (82) 3கை இன்னிசை அரங்கம் 1ப் பாட்டின் மலர்க்காட்சி ராறு (95,195) ரை நிறுத்திய ஒளவையார்				
UNIT II	அறநெறித் தமிழ்				6
- அற புகடி 2. பிற ஆ - ஏல	நறி வகுத்த திருவள்ளுவர் ம் வலியுறுத்தல், அன்புடமை, ஒப்பறவு அறிதல், ஈகை, ழ் அறநூல்கள் - இலக்கிய மருந்து ாதி, சிறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை ரய்மையை வலியுறுத்தும் நூல்)				
UNIT III	இரட்டைக் காப்பியங்கள்				6

- சிலப் 2. சமூக	ாகி புரட்சி பபதிகார வழக்குரை காதை சேவை இலக்கியம் மணிமேகலை நக்கோட்டம் அறக்கோட்டமாகிய காதை	
UNIT IV	அருள்நெறித் தமிழ்	6
- பா பெ கெ 2. நற்றின - அவ 3. திருமர் - இய 4. தர்மச் 5. புறநாழ 6. அகநா நற்றின கலித்(ஐந்தில	ர்னைக்குரிய புன்னை சிறப்பு த்திரம் (617, 618) பமம் நியமம் விதிகள் சாலையை நிறுவிய வள்ளலார்	
UNIT V	நவீன தமிழ் இலக்கியம்	6
- தமீ - தமீ - கட் - பட - நாட்டு 3. சமுத 4. பெண் இலச் 5. அறிஎ 6. இனை	ரநடைத் தமிழ் நிழின் முதல் புதினம் நிழின் முதல் சிறுகதை டூரை இலக்கியம் _கம்) விடுதலை போராட்டமும், தமிழ் இலக்கியமும் ராய விடுதலையும், தமிழ் இலக்கியமும் ர விடுதலையும், விளிம்பு நிலையினரின் மேம்பாட்டில் தமிழ் கியமும், வியல் தமிழ் னயத்தில் தமிழ் ச்சூழல் மேம்பாட்டில் தமிழ் இலக்கியம்	
	TOTAL: 30 PERI	ODS
தமிழ் இல	க்கிய வெளியீடுகள்/புத்தகங்கள்	

- 1. தமிழ் இணைய கல்விக்கழகம் (Tamil Virtual University) www.tamilvu.org
- தமிழ் விக்கிப்பீடியா (Tamil Wikipedia)
 https://ta.wikipedia.org
- 3. தர்மபுர ஆதீன வெளியீடு
- 4. வாழ்வியல் களஞ்சியம்
 - தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர்
- 5. தமிழ்கலைக் களஞ்சியம்
 - தமிழ் வளர்ச்சித் துறை (thamilvalarchithurai.com)
- 6. அறிவியல் களஞ்சியம்
 - தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர்