M.E. Degree

in

APPLIED ELECTRONICS

CURRICULUM & SYLLABUS (CBCS)

(For students admitted from the Academic Year 2022-2023)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

St. XAVIER'S CATHOLIC COLLEGE OF ENGINEERING

CHUNKANKADAI, NAGERCOIL – 629 003. KANYAKUMARI DISTRICT, TAMIL NADU, INDIA

St. XAVIER'S CATHOLIC COLLEGE OF ENGINEERING CHUNKANKADAI, NAGERCOIL – 629 003. AUTONOMOUS COLLEGE AFFILIATED TO ANNA UNIVERSITY ACADEMIC REGULATIONS 2022 M.E. APPLIED ELECTRONICS CURRICULUM CHOICE BASED CREDIT SYSTEM

Inconsonance to the vision of our College,

An engineering graduate we form would be a person with optimal human development, i.e. physical, mental, emotional, social and spiritual spheres of personality.

He/she would be also a person mature in relationships, especially knowing how to treat everyone with respect, including persons of complementary gender with equality and gender sensitivity guided by clear and pro-social values.

He would be patriotic and would hold the Indian Constitution and all the precepts it outlays close to his heart and would have a secular spirit committed to safeguard and cherish the multi-cultural, multi-religious and multi-linguistic ethos of Indian Society.

Academically, he/she would be a graduate with a strong engineering foundation with proficient technical knowledge and skills. He would have enough exposure and experience into the ethos of relevant industry and be industry ready to construct a successful career for himself and for the benefit of the society.

He would have been well trained in research methodology and would have established himself as a researcher having taken up many research projects, with sound ethical standards and social relevance. He would be a person with a passion for technical innovations committed to lifelong learning and research.

He would be well prepared and confident to develop ingenuous solutions to the problems people faceas an individual and as a team and work for the emancipation of our society with leadership and courage.

M.E Applied Electronics is a post-graduate program that combines engineering knowledge and practical application to address real-world problems. This program is offered to provide a broad knowledge and practical experience in Applied Electronics with fundamentals and cutting-edge technology in electronic system design , signal & image processing , semiconductor devices modelling and design, Analog & Digital IC design. The course offers the basic skills, in relation to recent techniques in electronic design and processing analog and digital signals acquired from sensors and actuators. The course provides study of technological processes as base of the CMOS digital integrated circuits. The course also provides skills to design and test relatively complex digital architectures through the use of VHDL. It is designed to help graduates develop ethical and moral values while learning to design, implement, and manage electronics systems for societal needs.

I. PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

I	Teach students to acquire knowledge in latest hardware and software required for designing and critically analyzing electronic circuits related to industry and society.
II	Motivate students to propose innovative solutions for socially significant and challenging projects, for societal benefits.
ш	To enable the graduates to adapt to advancements in technology through self- learning and to pursue research to meet out the demands in industries and Academia.
IV	Mould students to progress and develop with ethics, leadership skills and to communicate effectively.
V	To motivate students to become entrepreneurs to develop indigenous solutions.

II. PROGRAMME OUTCOMES (POs)

РО	Programme Outcomes
1	Independently carry out research/investigation and development work to solve
1	practical problems.
2	Write and present substantial technical report/document.
3	Demonstrate a degree of mastery over the electronic system design at a level
3	higher than the requirements in the appropriate bachelor program
	To evaluate the design and provide optimal solutions to problems in advanced
4	signal processing, digital system design, embedded systems, Internet of things
	and VLSI design
5	To develop electronic systems using latest engineering hardware and software
5	tools.
	To work professionally and ethically, adapt to technological changes,
6	communicate effectively, work and lead a team and practice responsibly in a
	global environment in the area of applied electronics

PEO's – PO's & PSO's MAPPING

PROGRAMME EDUCATIONAL	PROGRAMME OUTCOMES							
OBJECTIVES	1	2	3	4	5	6		
I	1	3	1	2	-	-		
II	2	-	1	2	-	2		
III	2	-	-	1	1	2		
IV	-	-	1	-	-	1		
V	1	-	1	2	1	-		

Year	Semester	Course Name]	20		
Tear	Schlester	Course Maine	1	2	3	4	5	6
		Applied Mathematics for Electronics Engineers	2	2	-	-	-	1
		Digital CMOS VLSI Design	1	-	1	2	-	-
I	Ι	Advanced Digital System Design	2	1	1	1	1	1
		Electronics System Design Laboratory	1.6	1	1.8	3	1.5	2
		Power Conversion Circuits for	2	1	2	1	1	1
		Electronics						
		Semiconductor Devices and	2	1	2	1	1.4	1.4
т	п	Modeling						
1	11	Advanced Digital Signal	2	1	2	2	2	1
		Processing						
		Embedded Systems	2	-	2	1	2	1
		VLSI Design Laboratory	1.6	1	1.8	2	1.5	2

PROGRAMME ARTICULATION MATRIX

M.E. APPLIED ELECTRONICS CURRICULUM

SEMESTER I

SL.	COURSE	COURSE TITLE	CATE -		RIOI R WE		TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	Т	Р	PERIODS	
THE	ORY COUR	SES						
1.	MA22103	Applied Mathematics for Electronics Engineers	FC	3	1	0	4	4
2.	AE22102	Digital CMOS VLSI Design	PCC	3	0	0	3	3
3.		Professional Elective - I	PEC	3	0	0	3	3
THE	ORY COUR	SES WITH PRACTIC	CAL COM	IPON	ENT			
4.	AE22101	Advanced Digital System Design	PCC	3	0	2	5	4
PRA	CTICAL CO	URSES						
5.	AE22103	Electronics System Design Laboratory	PCC	0	0	4	4	2
EMP	LOYABILI	TY ENHANCEMENT	COURSE	ES				
6.	AE22104	Technical Seminar	EEC	0	0	2	2	1
7.	RM22101	Research Methodology	RMC	2	0	0	2	2
MAN	DATORY C	OURSES						
8.		Audit Course – I	AC	2	0	0	2	0
	TOTAL					8	25	19

SEMESTER II

SL.	COURSE	COURSE TITLE	CATE		RIO R WE		TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	T	P	PERIODS	CREDITS
THE	ORY COUR	SES						
1.	AE22204	Power Conversion Circuits for Electronics	PCC	3	0	0	3	3
2.		Professional Elective II	PEC	3	0	0	3	3
3.		Professional Elective III	PEC	3	0	0	3	3
THE	ORY COUR	SES WITH PRACTIC	CAL COM	IPON	ENT	_		
4.	AE22201	Semiconductor Devices and Modeling	PCC	3	0	2	5	4
5.	AE22202	Advanced Digital Signal Processing	PCC	3	0	2	5	4
6.	AE22203	Embedded Systems	PCC	3	0	2	5	4
PRA	CTICAL CO	URSES			•			
7.	AE22205	VLSI Design Laboratory	PCC	0	0	4	4	2
EMP	LOYABILI	TY ENHANCEMENT	COURSE	ES		_		
8.	RM22201	Research Tools Laboratory	RMC	0	0	4	4	2
MAN	DATORY C	OURSES						
9.		Audit Course – II	AC	2	0	0	2	0
		TOTAL		20	0	14	34	25

SEMESTER III

SL. NO.	COURSE CODE	COURSE TITLE	CATE -		RIO WE	EK	TOTAL CONTACT	CREDITS			
			GORY	L	Т	Р	PERIODS				
THE	THEORY COURSES										
1.		Professional Elective	PEC	3	0	0	3	3			
1.		V									
2.		Open Elective	OEC	3	0	0	3	3			
THE	ORY COUR	SES WITH PRACTIC	CAL COM	IPON	ENT						
3.		Professional Elective	PEC	3	0	2	5	4			
FMP	I OVABILI'I	TY ENHANCEMENT	COURSE								
			COURSI	04 ا		1					
4.	AE22301	Inplant / Industrial / Practical Training (4 weeks during summer vacation)	EEC	0	0	4	4	2			
5.	AE22302	Project Work I	EEC	0	0	6	6	3			
	TOTAL					12	21	15			

SEMESTER IV

SL. NO.	COURSE COURSE TITLE		CATE -	PERIODS PER WEEK					TOTAL CONTACT	CREDITS
110.	CODE		GORY	L	Т	Р	PERIODS			
EMP	EMPLOYABILITY ENHANCEMENT COURSES									
1.	AE22401	Project Work II	EEC	0	0	24	24	12		
	TOTAL					24	24	12		

TOTAL CREDITS: 71

LIST OF PROFESSIONAL ELECTIVE COURSES (PEC)

	SEMESTER I, PROFESSIONAL ELECTIVE I										
S.	COURSE TITLE		CATE -	PERIODS PER WEEK			-				
NO.	CODE		GORY	L	Т	Р	PERIODS	CREDITS			
1.	AE22111	Applications Specific Integrated Circuits	PEC	3	0	0	3	3			
2.	AE22112	Electromagnetic Interference and Compatibility	PEC	3	0	0	3	3			
3.	AE22113	Analog and Mixed Signal IC Design	PEC	3	0	0	3	3			
4.	AE22114	VLSI Testing	PEC	3	0	0	3	3			
5.	AE22115	Soft Computing and Optimization Techniques	PEC	3	0	0	3	3			

SEMESTER I, PROFESSIONAL ELECTIVE I

SEMESTER II, PROFESSIONAL ELECTIVE II

S.	COURSE	COURSE TITLE	CATE -	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	Т	Р	PERIODS	
1.	CU22322	RF System Design	PEC	3	0	0	3	3
2.	AE22211	Robotics	PEC	3	0	0	3	3
3.	AE22212	Computer Architecture and Parallel Processing	PEC	3	0	0	3	3
4.	AE22213	VLSI Design Techniques	PEC	3	0	0	3	3
5.	AE22214	Industrial Internet of Things	PEC	3	0	0	3	3

SEMESTER II, PROFESSIONAL ELECTIVE III

S	COURSE	COURSE TITLE	CATE	PERIODS PER WEEK		TOTAL CONTACT	CREDITS	
NO.	CODE		GORY		T	P	PERIODS	CILLDIID
1.	AE22221	Quantum Computing	PEC	3	0	0	3	3
2.	CU22222	VLSI for Wireless	PEC	3	0	0	3	3
		Communication						

3.	AE22222	Micro Electro Mechanical Systems	PEC	3	0	0	3	3
4.	AE22223	CAD for VLSI Circuits	PEC	3	0	0	3	3
5.	AE22224	Hardware Secure Computing	PEC	3	0	0	3	3

SEMESTER III, PROFESSIONAL ELECTIVE IV

S.	COURSE	COURSE TITLE	CATE	TE PERIODS PER WEEK				CREDITS
NO.	CODE	COURSE IIILE	GORY		T	P	PERIODS	CREDITS
1.	AE22311	Modeling and	PEC	3	0	2	5	4
		Synthesis with HDL						
2.	MX22313	Deep Learning	PEC	3	0	2	5	4
3.	AE22312	Digital Image	PEC	3	0	2	5	4
		Processing						
4.	MX22203	Machine Learning	PEC	3	0	2	5	4
		Techniques						
5.	AE22313	PCB Design	PEC	3	0	2	5	4

SEMESTER III, PROFESSIONAL ELECTIVE V

			CATE		RIOD		TOTAL	
S.	COURSE	COURSE TITLE	-	PER	WE	EK	CONTACT	CREDITS
NO.	CODE		GORY	L	Т	Р	PERIODS	
1.	AE22321	Sensors and Actuators	PEC	3	0	0	3	3
2.	AE22322	Digital High Speed	PEC	3	0	0	3	3
		Design	FEC	5	0	0	5	3
3.	AE22323	Consumer Electronics	PEC	3	0	0	3	3
4.		Advanced						
	AE22324	Microprocessors and	PEC	3	0	0	3	3
		Microcontrollers	TLC	5	U	0	5	5
		Architecture						
5.	AE22325	Automotive Electronics	PEC	3	0	0	3	3

AUDIT COURSES (AC)

SL. NO.	COURSE CODE	COURSE TITLE	CATE -	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
			GORY	L T P		Р	PERIODS	
1.	AC22101	English for Research	AC	2	0	0	2	0
		Paper Writing						
2.	AC22102	Constitution of India	AC	2	0	0	2	0
3.	AC22201	Disaster Management	AC	2	0	0	2	0
4.	AC22202	நற்றமிழ் இலக்கியம	AC	2	0	0	2	0

LIST OF OPEN ELECTIVES

SL. NO	COURSE CODE	COURSE TITLE	PEI	RIODS WEE	S PER K	TOTAL CONTACT	CREDITS
•			L	Т	Р	PERIODS	
1.	PE22354	Smart Grid	3	0	0	3	3

2.	SE22351	Structural Health Monitoring	3	0	0	3	3
3.	SE22341	Smart Materials and Smart Structures	3	0	0	3	3
4.	CP22351	Agile Methodologies	3	0	0	3	3
5.	CP22344	Data Visualization Techniques	3	0	0	3	3

SUMMARY

		M.E. Appli	ed Electron	ics		
C No	Subject Area		Credits pe	r Semester		Total
S. No.	Subject Area	Ι	II	III	IV	Credits
1	FC	4	-	-	-	4
2	PCC	9	17	-	-	26
3	PEC	3	6	7	-	16
4	OEC	-	-	3	-	3
5	EEC	1	-	5	12	18
6	RMC	2	2	-	-	4
7	Non-Credit AC	0	0	-	-	0
	TOTAL	19	25	15	12	71

SEMESTER I

MA22103	APPLIED MATHEMATICS FOR ELECTRONICS ENGINEERS	L	Т	Р	С
		3	1	0	4
COURSE OF	JECTIVES:				
	lerstand the basics of random variables with emphasis on the standation distributions	ard d	iscre	te a	nd
• To un variab	derstand the basic probability concepts with respect to two dime es	nsior	nal r	ando	om
condit	ke students understand the notion of a Markov chain, and how so onal probability and matrices can be used to give a thorough and efference – time Markov chains	-			
-	vide the required fundamental concepts in queuing models and apply t vorks, image processing	hese	tech	niqu	ies
UNIT I	FUZZY LOGIC			1	2
Classical logic	e – Logic functions of two variables – Properties of Boolean algebra	s - N	Aulti	valu	led
logics – Primi	tives of some three-valued logics – Fuzzy propositions – Fuzzy quanti	fiers.			
UNIT II	PROBABILITY AND RANDOM VARIABLES			1	2
Probability -	Axioms of probability - Conditional probability - Baye's theorem- I	Discr	ete r	ando	om
variable – Pro	bability mass function- Continuous random variable - Probability de	nsity	, fune	ction	1 —
Properties - r	nean, variance - Special distributions: Binomial, Poisson and Norm	nal d	istrit	outic	ons
riopernes - L					
(Derivations n	ot included).				
-	ot included). TWO DIMENSIONAL RANDOM VARIABLES			1	2
(Derivations n UNIT III		s –D	iscre	-	
(Derivations n UNIT III Two dimensio	TWO DIMENSIONAL RANDOM VARIABLES			te a	nd
(Derivations n UNIT III Two dimension continuous	TWO DIMENSIONAL RANDOM VARIABLES	oren	n(exc	te a ludi	nd ng

UNI	T IV	RANDOM PROCESSES	12
Clas	sifica	tion – Stationary random process – Markov process – Markov chain – Poisson proc	ess -
Disc	rete	parameter Markov chain - Chapman Kolmogorov equations (Statement only	ly) -
Limi	iting	distributions – Auto correlation – Cross correlation.	
UNI	ΤV	QUEUEING MODELS	12
Elen	nents	of queuing system - Kendall's notation - Markovian queues - Single channel queuein	ng
mod	el - 1	multi channel queuing model – Little's formula – Steady state analysis – Self-service	
queu	le.		
		TOTAL: 60 PERI	ODS
		E OUTCOMES:	
		d of the course, the students will be able to:	
CC)1:	Define fuzzy logic, probability, random processes and queuing models	
)2:	Classify fuzzy, distributions, and random processes	
CC)3:	Explain the ideas of single and multiple server queueing models	
CC) 4.	Apply Fuzzy prepositions, random variables, Markov and Poisson processe	s in
		electronics field	
		Apply queuing models with finite and infinite capacity to solve practical problems	
REF		ENCES:	
1.		las E Johnson, "Applied multivariate methods for data Analysis", Thomson and Dux	bury
		ss, Singapore, 1998.	
2.		hard A. Johnson and Dean W. Wichern, "Applied multivariate statistical Analy	/sis",
		rson Education, 6th Edition, New Delhi, 2023.	
3.	S.P.	Gupta, "Statistical Methods", Sultan Chand & Sons, 48th edition, New Delhi, 2022.	
4.		ver C. Ibe, "Fundamentals of Applied probability and Random Processes", Acad	emic
		ss, Boston, 2014.	
5.		nson R. A. and Gupta C.B., "Miller and Freund's Probability and Statistics for Engine	ers",
	Pea	rson India Education, Asia, 9th Edition, New Delhi, 2017. Jersey, 2004.	

Course		Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6				
C01	2	2	-	-	-	-				
CO2	2	2	-	-	-	-				
CO3	2	2	-	-	-	1				
CO4	2	2	-	-	-	1				
CO5	2	2	-	-	-	1				
СО	2	2	-	-	-	1				

Unit No. and Title	Total 2	Total 16		Cogniti	ve Level	
	Marks	Marks	Remember	Understand	Apply	Analyse (An)
	Qns.	Qns.	(Kn)	(Un)	(Ap)	Evaluate (Ev)
Unit-I: FUZZY	2	1 either	1(2)-CO1	1(2)-CO2	1either or	-
LOGIC		or			(16)-CO4	
Unit-II:	2	1 either	1(2)-CO1	1(2)-CO2	1either or	-
PROBABILITY		or			(16)-CO4	
AND RANDOM						
VARIABLES						

Unit-III: TWO	2	1 either	1(2)-CO1	1(2)-CO2	1either or	-
DIMENSIONAL		or			(16)-CO4	
RANDOM						
VARIABLES						
Unit-IV:	2	1 either	1(2)-CO1	1(2)-CO2	1either or	-
RANDOM		or			(16)-CO4	
PROCESSES						
Unit-V:	2	1 either	1(2)-CO1	1(2)-CO3	1either or	-
QUEUEING		or			(16)-CO5	
MODELS						
Total Qns.	10	5 either	5(2)	5(2)	5 either	-
		or			or (16)	
Total Marks	20	80	10	10	80	-
Weightage	20%	80%	10%	10%	80%	-
		Weig	ghtage for CO	Ds		
	CO1	CO2	CO3	C	04	CO5
Total Marks	10	8	2	6	4	16
Weightage	10%	8%	2%	64	%	16%

AE22102	DIGITAL CMOS VLSI DESIGN	L	Τ	Р	С
		3	0	0	3
	OBJECTIVES:				
	introduce the transistor level design of all digital building blocks con			all C	MOS
	roprocessors, network processors, digital backend of all wireless syste				
	introduce the principles and design methodology in terms of the domi straints and performance measures	nant	circ	uit ch	oices,
• To	learn all important issues related to size, speed and power consumptio	n			
UNIT I	MOS TRANSISTOR PRINCIPLES AND CMOS INVERTER				12
MOSFET	characteristic under static and dynamic conditions, MOSFET second	lary	effe	ects, e	lmore
constant, (CMOS inverter-static characteristic, dynamic characteristic, power,	ener	gy,	and e	nergy
delay parai					
UNIT II	COMBINATIONAL LOGIC CIRCUITS				9
	OS design, different styles of logic circuits, logical effort of compl	ex g	gates	, stati	c and
· ·	operties of complex gates, interconnect delay, dynamic logic gates.				
UNIT III	SEQUENTIAL LOGIC CIRCUITS				9
Static late	hes and registers, dynamic latches and registers, timing issues,	pipe	eline	s, clo	cking
strategies,	non bistable sequential circuits. Interconnect and Clocking Strategies.				
UNIT IV	ARITHMETIC BUILDING BLOCKS				9
Data path	circuits, architectures for adders, accumulators, multipliers, barrel sh	ifter	s, sp	eed, j	powe
and area tra	adeoffs.				
UNIT V	MEMORY ARCHITECTURES				6
Memory and	chitectures and Memory control circuits: Read-Only Memories, ROM	I ce	lls, F	Read-	Write
Memories	(RAM), dynamic memory design, Transistor SRAM cell, sense amplif	••			
	(XAW), dynamic memory design, fransisior SKAW cen, sense ampin	iers			
				PER	IODS
COURSE				PER	IODS
	TO			PER	IODS
	TOT OUTCOMES:			PER	IODS

CO3	Construct the design methodology of memory architectures and arithmetic building blocks					
CO4	Analyze combinational and sequential logic circuits					
CO5	Design and analyze digital CMOS circuits					
REFE	RENCES:					
1.	N.Weste, K. Eshraghian, "Principles of CMOS VLSI Design", Addision Wesley, 2nd					
	Edition, 1993					
2.	M J Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997					
3.	Sung-Mo Kang & Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis And					
	Design", Mcgraw-Hill, Revised 4 th Edition, 2019.					
4.	Jan Rabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design					
	Perspective", Prentice Hall Of India, 2nd Edition, 2016					
5.	Neil H.E.Weste, David Money Harris, "CMOS VLSI Design-A Circuit and Systems					
	Perspective", Pearson, 4 th Edition, 2015.					
6.	R. Jacob Baker, "CMOS: Circuit Design, Layout, and Simulation", 4 th Edition, Wiley-IEEE					
	Press, 2019.					

Course	Programme Outcomes							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	1	2	-	-		
CO2	1	-	1	2	-	-		
CO3	1	-	1	2	-	-		
CO4	1	-	1	2	-	-		
CO5	1	-	1	2	-	-		
СО	1	-	1	2	-	-		

Unit No. and Title	Total 2	Total 16		Cognitive	Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I:MOS	2	1either	2(2)-CO1	1either or	-	-
TRANSISTOR		or		(16)-CO1		
PRINCIPLES AND						
CMOS INVERTER						
Unit-II:	2	1either	2(2)-CO2	1either or	-	-
COMBINATIONAL		or		(16)-CO2		
LOGIC CIRCUITS						
Unit-III:	2	1either	1(2)-CO3	1(2)-CO3	-	-
SEQUENTIAL		or		1either or		
LOGIC CIRCUITS				(16)-CO3		
Unit-IV:.	2	1either	1(2)-CO3	1(2)-CO3	1either or	-
ARITHMETIC		or			(16)-CO4	
BUILDING						
BLOCKS						
Unit-V: MEMORY	2	1either	1(2)-CO3	1(2)-CO5		-
ARCHITECTURES		or		1either or		

					(16)-CO5				
Total Qns. Title	: 10	5either	7(2)			3(2) 1		ither	-	
AE22102-DIGITAL		or			4 either or		or			
CMOS VLS	I				((16)	(1	16)		
DESIGN										
Total Marks	20	80	1	14		70		16	-	
Weightage	20%	80%	14	%	70% 1		10	6%	-	
		We	eightage	for COs	5					
	CO1	CO2	O2 CO3		CO4		ŧ l		CO5	
Total Marks	20	20	20		20		20		20	
Weightage	20%	20%		20% 20%		20%		20%		

AE22101	ADVANCED DIGITAL SYSTEM DESIGN	L	Т	Р	С
		3	0	2	4
COURSE (DBJECTIVES:				
• To	design asynchronous sequential circuits				
• To	learn about hazards in asynchronous sequential circuits				
• To	study the fault testing procedure for digital circuits				
• To	understand the architecture of programmable devices				
• To	design and implement digital circuits using programming tools				
UNIT I	SEQUENTIAL CIRCUIT DESIGN				9
Analysis of	Clocked Synchronous Sequential Circuits and Modeling - State Di	agra	ım,	State'	Table,
	Assignment and Reduction-Design of Synchronous Sequential				
Iterative Cir	cuits-ASM Chart and Realization using ASM				
UNIT II	ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN				9
Analysis of	Asynchronous Sequential Circuit - Flow Table Reduction-Races	-Sta	te A	ssign	ment-
Transition 7	Table and Problems in Transition Table- Design of Asynchronous	Seq	Jenti	al Čii	cuit -
	amic and Essential hazards - Mixed Operating Mode Asynch				
Designing '	Vending Machine Controller.				
UNIT III	FAULT DIAGNOSIS AND TESTABILITY ALGORITHMS				9
Fault Table	Method-Path Sensitization Method - Boolean Difference Method	1 - I) Al	gorith	ım —
Tolerance '	Techniques – The Compact Algorithm – Fault in PLA – Test	Gei	nera	tion -	DFT
	- Built in Self Test.				
UNIT IV	SYNCHRONOUS DESIGN USING PROGRAMMABLE DEVI				9
-	ng Logic Device Families – Designing a Synchronous Sequent				-
	- Designing ROM with PLA – Realization of Finite State Machine	usin	g PI	LD – I	FPGA
	GA - Xilinx 4000.				
	SYSTEM DESIGN USING VERILOG				9
	Iodeling with Verilog HDL – Logic System, Data Types And Operation				
	HDL - Behavioral Descriptions In Verilog HDL – HDL Based Sy				
	ate Machines–Structural Modeling – Compilation And Simulation			-	
	- Realization Of Combinational And Sequential Circuits Using Vo		-	-	
	- FIFOs-Sequential Machine –Adder – Multiplier- Divi	der		Desig	n Of
Simple Mic	croprocessor, Introduction To System Verilog.		. 15	DFD	IODE
SUCCEST	ED ACTIVITIES:	IAL	: 43	FEK	IODS
POGGEQI					
1.	Design asynchronous sequential circuits				

2						
2.	Design synchronous sequential circuits using PLA/PAL					
3.	Simulation of digital circuits in FPGA.					
4.	Design digital systems with System Verilog.					
PRAC	TICAL EXERCISES: 30 PERIODS					
1.	Design of Registers by Verilog HDL.					
2.	Design of Counters by Verilog HDL.					
3.	Design of Sequential Machines by Verilog HDL.					
4.	Design of Serial Adders, Multiplier and Divider by Verilog HDL.					
5.	Design of a simple Microprocessor by Verilog HDL					
	TOTAL: 75 PERIODS					
	SE OUTCOMES:					
At the e	and of the course, the students will be able to:					
CO1:	Infer the basic concept of combinational circuit, synchronous sequential circuits and					
	architecture of programmable devices.					
CO2:	Illustrate the testing procedure for combinational circuit and PLA.					
CO3:	Construct the synchronous and asynchronous sequential circuits.					
CO4:						
CO5:						
REFER	RENCES:					
1.	Charles H.Roth., "Fundamentals of Logic Design" Seventh Edition, Cengage Learning,					
	2014					
	Prentice Hall, 1999					
3.	M.G.Arnold, Verilog Digital – Computer Design, Prentice Hall (PTR), 1999.					
4.	Nripendra N Biswas "Logic Design Theory" Prentice Hall of India, 2001.					
	Paragk.Lala "Fault Tolerant and Fault Testable Hardware Design" B S Publications,2002.					
6.	Paragk.Lala "Digital System Design Using PLD" B S Publications, 2003.					
7.	Palnitkar, Verilog HDL – A Guide to Digital Design and Synthesis, Pearson, 2003.					

Course		Prog	ramme C	Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	1	1	1	1
CO2	2	1	1	1	1	1
CO3	2	1	1	1	1	1
CO4	2	1	1	1	1	1
CO5	2	1	1	1	1	1
СО	2	1	1	1	1	1

Unit No. and	Total 2	Total 16		Cognitive Level					
Title	Marks	Marks	Remember	Understand	Apply (Ap)	Analyse(An)			
	Qus.	Qus.	(Kn)	(Un)		Evaluate(Ev)			
Unit I :	2	1either or	1(2)-CO1	1(2)-CO1	leither or	-			
Sequential					(16)				
Circuit Design					CO1				

00		1	Weightage fo		I	
Weightage	20%	80%	10%	24%	66%	-
Total Marks	20	80	10	24	66	-
DESIGN						
SYSTEM						
DIGITAL				()	()	
ADVANCED				(16)	(16)	
AE22202-			- (-)	1 either or	4 either or	
Total Title :	10	5either or	5(2)	4(2)	1(2)	_
Using Verilog					(16)-CO5	
System Design				1(2)-CO5	leither or	
Unit V :	2	1either or			1(2)-CO5	-
Devices						
Programmable						
Design Using				-		
Synchronous					(16)-CO4	
Unit IV:	2	1either or	2(2)-CO4		1 either or	-
Algorithms				CO3		
And Testability				(16)	-	
Fault Diagnosis				1either or		
Unit III:	2	1either or	1(2)-CO3	1(2)-CO3		_
Circuit Design					001	
Sequential					CO2	
Asynchronous	-		1(2) 002	1(2) 002	(16)	
Unit II:	2	1either or	1(2)-CO2	1(2)-CO2	1either or	_

	CO1	CO2	CO3	CO4	CO5
Total Marks	20	20	20	20	20
Weightage	20%	20%	20%	20%	20%

AE22103	ELECTRONIC SYSTEM DESIGN LABORATORY	L	Τ	Р	С
		0	0	4	2
OBJECT	IVES:				
•	Design of instrumentation amplifier and voltage regulator				
•	Design of PCB layout				
•	Write a Verilog HDL coding of various combinational circuits				
•	Verify the design functionality for various memory modules				
•	Design of PLL circuits				
LIST OF	EXPERIMENTS				
1.	Design of a 4-20 mA transmitter for a bridge type transducer.				
	Design the Instrumentation amplifier with the bridge type transducer resistance variation transducers) and convert the amplified instrumentation amplifier to $4 - 20$ mA current using op-amp. Plot temperature Vs output current.	voltag	ge fi	rom	the
2.	Design of AC/DC voltage regulator using SCR				
	Design a phase controlled voltage regulator using full wave rectifier conduction angle and plot the output voltage.	and S	SCR,	vary	the
2	PCB layout design using CAD				
3.	Drawing the schematic of simple electronic circuit and design of PCB	layout	usin	g CA	D

4.	HDL based design entry and simulation of Parameterizable cores of Counters, Shift registers, State machines, 8-bit Parallel adders and 8 –Bit multipliers.
5.	HDL based design entry and simulation of Parameterizable cores on the simple Distributed Arithmetic system. Test vector generation and timing analysis.
6.	HDL based design entry and simulation of Parameterizable cores on memory design and 4 — bit ALU. Synthesis, P&R and post P&R simulation, Critical paths and static timing analysis results to be identified. FPGA real time programming and I/O interfacing.
7.	Interfacing with Memory modules in FPGA Boards. Verifying design functionality by probing internal signals.
8.	Realization of Discrete Fourier transform/Fast Fourier Transform algorithm in HDL and observing the spectrum in simulation.
9.	Invoke PLL module and demonstrate the use of the PLL for clock generation in FPGAs. Verify design functionality implemented in FPGA by capturing the signal in Oscilloscope
	TOTAL: 60 PERIODS
COURS	E OUTCOMES:
At the er	nd of the course, the students will be able to:
CO1:	Design an instrumentation amplifier and voltage regulator
CO2:	Design a PCB layout using CAD tool
CO3:	Write a Verilog code for various combinational and sequential circuits
COA	Develop a memory module with EDCA

CO4:Develop a memory module with FPGACO5:Design an PLL circuit

Mapping of Course Outcomes to Programme Outcomes

Course	Programme Outcomes						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2	1	-	2	2	1	
CO2	-	1	2	-	1	-	
CO3	1	-	2	2	-	1	
CO4	2	1	1	-	-	2	
CO5	-	1	2	-	-	-	
СО	1.6	1	1.8	2	1.5	2	

AE22104	4 TECHNICAL SEMINAR	L	Т	Р	C	
		0	0	2	1	
LIST OF	EXPERIMENTS					
1.	Selecting a subject, narrowing the subject into a topic					
2.	Stating an objective.					
3.	Collecting the relevant bibliography (at least 15 journal papers)					
4.	Preparing a working outline.					
5.	Studying the papers and understanding the author's contributions and c each paper.	ritical	ly an	alysi	ng	
6.	Preparing a working outline					
7.	Linking the papers and preparing a draft of the paper.					
8.	· Preparing conclusions based on the reading of all the papers.					
9.	Writing the Final Paper and giving final Presentation					
	ТОТ	AL: 3	60 PI	ERIC	DDS	

Activity	Instructions	Submission	Evaluation
		week	
Selection of area of interest and Topic Stating an Objective	You are requested to select an area of interest, topic and state an objective	2 nd week	 3 % Based on clarity of thought, current relevance and clarity in writing 3% (the
Collecting Information about your area & topic	 List 1 Special Interest Groups or professional society List 2 journals List 2 conferences, symposia or workshops List 1 thesis title List 3 web presences (mailing lists, forums, news sites) List 3 authors who publish regularlyin your area Attach a call for papers (CFP) from your area. 		selected information must bearea specific and of international and national standard)
Collection of Journal papers inthe topic in the context of the objective – collect20 & then filter	 You have to provide a complete list of references you will be using- Based on your objective -Search various digital libraries and Google Scholar When picking papers to read - try to: Pick papers that are related to each other in some ways and/or that are in the same field so that you can write a meaningful survey out of them, Favour papers from well-knownjournals and conferences, Favour "first" or "foundational" papers in the field (as indicated in other people's survey paper), Favour more recent papers, Pick a recent survey of the field so you can quickly gain an overview, Find relationships with respect to each other and to your topic area (classification scheme/categorization) Mark in the hard copy of papers whether complete work or section/sections of the paper are being considered 	4 th week	6% (the list of standardpapers and reason for selection)
Reading and notes for first 5papers	Reading Paper ProcessFor each paper form a Tableanswering the following questions:	5 th week	8% (the table given should indicate your

	 What is the main topic of the article? What was/were the main issue(s)the author said they want to discuss? Why did the author claim it was important? How does the work build on other's work, in the author's opinion? 		understanding of thepaper and the evaluation is based on your conclusions about each paper)
	 What simplifying assumptions does the author claim to be making? What did the author do? How did the author claim they were going to evaluate their work and compare it to others? What did the author say were the limitations of their research? What did the author say were the important directions for future research? Conclude with limitations/issues not addressed by the paper (from the perspective of your survey) 	-th -	
Reading and notes for next5papers	Repeat Reading Paper Process	6 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based onyour conclusions about each paper)
Reading and notes for final 5papers	Repeat Reading Paper Process	7 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based onyour conclusions about each paper)
Draft outline 1 and Linking papers	Prepare a draft Outline, your survey goals, along with a classification / categorization diagram	8 th week	8% (this component willbe evaluated based on the linking and classification amongthe papers)

Abstract	Prepare a draft abstract and give a presentation	9 th week	 6% (Clarity, purpose and conclusion) 6% Presentation & Viva Voce
Introduction	Write an introduction and background	10 th week	5% (clarity)
Background	sections		
Sections of the	Write the sections of your paper based on	11 th week	10%
paper	the classification / categorization diagram		(this
	in keeping with the goals of your survey		component will
			be evaluated
			based on the
			linking and
			classification
			among
			the papers)
Your conclusions	Write your conclusions and future work	12 th week	5% (conclusions
			-
			clarity and your
			ideas)
Final Draft	Complete the final draft of your paper	13 th week	10%
			(formatting,
			English,
			Clarity and
			linking)
			4% Plagiarism
			Check
			Report
Seminar	A brief 15 slides on your paper	14^{th} &	10% (based on
		15 th week	presentation and
			Viva-voce)

RM22101	RESEARCH METHODOLOGY	L	Т	Р	С		
		2	0	0	2		
UNIT I RESEARCH DESIGN							
	Overview of research process and design, Use of Secondary and exploratory data to answer the research question, Qualitative research, Observation studies, Experiments and Surveys.						
UNIT II DATA COLLECTION AND SOURCES							
Measuremen	ts, Measurement Scales, Questionnaires and Instruments, Sampling	and	met	hods.I	Data -		
Preparing, E	xploring, examining and displaying.						
UNIT III	DATA ANALYSIS AND REPORTING				6		
Overview of Multivariate analysis, Hypotheses testing and Measures of Association. Presenting							
Insights and findings using written reports and oral presentation.							
UNIT IV	INTELLECTUAL PROPERTY RIGHTS						
	10						

Intellectual Property — The concept of IPR, Evolution and development of concept of IPR, IPR development process, Trade secrets, utility Models, IPR & Bio diversity, Role of WIPO and WTOin IPR establishments, Right of Property, Common rules of IPR practices, Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance.

UNIT V PATENTS

Patents — objectives and benefits of patent, Concept, features of patent, Inventive step, Specification, Types of patent application, process E-filling, Examination of patent, Grant of patent, Revocation, Equitable Assignments, Licenses, Licensing of related patents, patent agents, Registration of patent agents.

TOTAL: 30 PERIODS

6

REFF	ERENCES:							
1.	Cooper Donald R, Schindler Pamela S and Sharma JK, "Business Research Methods", Tata McGraw Hill Education, 11e (2012).							
2.	Kothari C R, Gaurav Garg, "Research Methodology- Methods and Techniques" New Age International Publishers, 2019.							
3.	Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade Secrets", Entrepreneur Press, 2007.							
4.	David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tool & techniques", Wiley, 2007.							
5.	The Institute of Company Secretaries of India, Statutory body under an Act of parliament, "Professional Programme Intellectual Property Rights, Law and practice", September 2013.							

		Total	Total		Cognitive	Level		
Unit No. and T	Title	2	16	Remember	Understand	Apply	Analyse (An)	
		Marks	Marks	(Kn)	(Un)	(Ap)	Evaluate (Ev)	
		Qns.	Qns.		No. of Qn	s. (marks)	and CO	
Unit-I: Research	h	2	1 either	2(2) - CO1	1 either or	-	-	
Design			or		(16) – CO1			
Unit-II: Data		2	1 either	2(2) - CO2		1 either or	-	
Collection And S	Sources		or			(16)—		
						CO2		
Unit-III: Data		2	1 either	1(2) — CO3	1(2) — CO3		1 either or	
Analysis And Re	eporting		or				(16)—CO3	
Unit-IV: Intelle	ectual	2	1 either	2(2) - CO4		1 either	-	
Property Rights			or			or (16)		
						-C04		
Unit-V: Patents		2	1 either	1(2) - CO5	1(2) - CO5	-		
			or		1 either or			
					(16) - CO5			
Total Qns. RESE		10	5 either or	8(2)	2(2)	2 either	-	
METHODOLOG	GΥ				2 either or	or		
					(16)	(16)		
Total Marks		20	80	16	36	32	16	
Weightage		20%	80%	16%	36%	32%	16%	
Weightage for COs								
	CO		CO2	CO3	CO4		CO5	
Total Marks	20	-	20) 20 20			20	
Weightage	20	%	20%	20%	20%		20%	

SEMESTER II

AE2220	4 POWER CONVERSION CIRCUITS FOR ELECTRONICS	L	Τ	P	C		
COUDE		3	0	0	3		
COURS	E OBJECTIVES:	•, 1	•	1 .			
	• To provide the students a deep insight in to the working of different s withrespect to their characteristics	witch	ung	devi	ces		
•	To analyze different converters with their applications						
•	 To study advanced converters and switching techniques implem- technology Pre requisites: Introductory physics, Electric networks, E devices 						
UNIT I	POWER ELECTRONIC DEVICES AND SEMICONDUCTOR SV	VITO	CHE	S	9		
devices - LASCR	ion, Applications of power electronics, Power electronics devices: Charact - characteristics of SCR, Diac, Triac, GTO, PUJT, power transistors – - two transistor model of SCR Protection of Thyristors against over v/dt and di/dt. Power Semiconductor Switches: Rectifier diodes, fast reco SCR PERFORMANCE AND APPLICATIONS	- pov volt	ver 1 age	FET: – o'	s – ver		
		ohro	nizir		-		
supply T parallel o	circuits for SCR – triggering with single pulse and train of pulses syn hyristor turn off methods, natural and forced commutation, self-commu- operations of SCRs. Rectifiers: Single phase and three phase controlled loads, RL load. Construction & Working of Opto- Isolators, Opto-TRIAC,	tation	n ser ctifie	ies a rs w	and		
UNIT II	I INVERTERS AND VOLTAGE CONTROLLERS				9		
Cyclo-co	s – DC to DC converters – Buck, boost and buck – boost. Single phase nveters, Power factor control and Matrix Converters. Industrial applicati C Motor Speed control Induction Motor Speed Control. TIMERS & DELAY ELEMENTS, HIGH FREQUENCY POWI HEATING,SENSOR AND ACTUATORS	ons l		-			
Industrial Sensors, Transduc Speed Se Drives. UNIT V Data Con	Constant Timers, Timer Circuits using SCR, IC-555, Programmable Applications, Induction Heating and Dielectric Heating System and The Transducers, and Transmitters for Measurement, Control & Monitoring : er, Photoconductive Transducers, Pressure Transducers, Flow Transducers nsing, Vibration Transducers, Variable-Frequency Drives, Stepper Motors AUTOMATION AND CONTROL nmunications for Industrial Electronics, Telemetry, SCADA & Automat	ir A Ther , Lev and s	pplic more vel S Serve AC	esisti enso omot	ns, ve rs, tor 9 DC		
	Voltage & Power Factor Control through Solid State Devices, Soft Swit	ching	g, In	dusti	rial		
Robots.	TOTA	. 45			DC		
COURS	E OUTCOMES:	L: 43	FE	KIU.	05		
At the er	d of the course, the students will be able to:						
CO1:	Explain the characteristics, operation of power switching devices an ratings and applications.	d id	entif	y th	eir		
CO2: Illustrate the construction and performance of SCR.							
CO3:	Construct the converter based on SCR for various industrial applications.						
CO4:	Develop the ability to know heating systems, timers, relevant sensors & a application in Industrial Setting.						
CO5:	Analyze the data communication, Telemetry & SCADA system Applications.	m ir	n In	dusti	rial		
	20						

REFER	ENCES:
1.	Thomas E. Kissell, Industrial Electronics: Applications for Programmable Controllers, Instrumentation and Process Control, and Electrical Machines and Motor Controls, 3rd edition, 2003, Prentice Hall.
2.	B. Paul, Industrial Electronic and Control, Prentice Hall of India Private Limited (2004).
3.	M.H. Rashid, "Power Electronics: Circuits, Devices & Applications", Pearson Education India; fourth edition, 2017.
4.	Ned Mohan, T.M. Undeland and W.P. Robbins, "Power Electronics: Converters, Applications and Design", Wiley India Ltd, 2008.
5.	M.S. Jamil Asghar, "Power Electronics" Prentice Hall of India Ltd., 2004
6.	V.R. Moorthy, "Power Electronics: Devices, Circuits and Industrial Applications" OxfordUniversity Press, 2007.
7.	G.K. Dubey, Power Semiconductor Controlled Drives, Prentice Hall inc. (1989).
8.	J.M.D. Murphy, F.G. Turnbull, Power Electronic Control of AC Motors, Pergamon (1990).

Course	Programme Outcomes						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2	1	2	1	1	1	
CO2	2	1	2	1	1	1	
CO3	2	1	2	1	1	1	
CO4	2	1	2	1	1	1	
CO5	2	1	2	1	1	1	
СО	2	1	2	1	1	1	

Unit No. and Title	Total 2	Total 16	Cognitive Level						
	Marks	Marks	Remember	Understand	Apply	Analyse(An)			
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)			
Unit I Power	2	1 either	2(2)-CO1	1either or		-			
Electronic Devices		or		(16)-CO1	-				
and Semiconductor									
Switches									
Unit II SCR	2	1 either	1(2)-CO2	1(2)-CO2	1either or	-			
Performance and		or			(16)-CO2				
Applications									
Unit III Inverters	2	1 either	1(2)-CO3	1(2)-CO3	1either or	-			
and Voltage		or			(16)-CO3				
Controllers									
Unit IV Timers &	2	1either	1(2)-CO4	1(2)-CO4	-	-			
Delay Elements,		or		1 either or					
High Frequency				(16)-CO4					
Power Heating,									
Sensor and									
Actuators									

Unit V Automation	2	1either	1(2)-CO5	5 1(2)-CO	- 55	-				
and Control		or		1either o	or					
				(16)-CO	5					
Total Title :	10	5either	6(2)	4(2)	2 either o	or -				
AE22204 -		or		3 either	or (16)					
POWER				(16)						
CONSERVATION										
CIRCUITS FOR										
ELECTRONICS										
Total Marks	20	80	12	56	32	-				
Weightage 20% 80% 12% 56% 32%										
Weightage for COs										
	CO1 CO2 CO3 CO4 CO5									

	CO1	CO2	CO3	CO4	CO5
Total Marks	20	20	20	20	20
Weightage	20%	20%	20%	20%	20%

AE22201	SEMICONDUCTOR DEVICES AND MODELING	L	Т	P	С
		3	0	2	4
COURSE (DBJECTIVES:				
	To acquire the fundamental knowledge and to expose to the field of theory and devices and their applications	sem	icor	duc	tor
	To gain adequate understanding of semiconductor device mod designingdevices for electronic applications	lelin	g a	spec	ts,
	To acquire the fundamental knowledge of different semiconductor de aspects	evice	e mo	odeli	ng
UNIT I	MOS CAPACITORS				9
Distribution Depletion E the Silicon– High-Field Tunneling i	otential: Accumulation, Depletion, and Inversion, Electrostatic Potenti in Silicon, Capacitances in an MOS Structure, Polysilicon-Gate Worl ffects, MOS under Non equilibrium and Gated Diodes, Charge in Silicon Oxide Interface, Effect of Interface Traps and Oxide Charge on Device Effects, Impact Ionization and Avalanche Breakdown, Band-to-Ba nto and through Silicon Dioxide, Injection of Hot Carriers from Silico gh-Field Effects in Gated Diodes, Dielectric Breakdown.	c Fu Dio Chai ind	nctio xide acte Tun	on a and ristion nelin	nd at cs, ng,
UNIT II	MOSFET DEVICES				9
Long-Char	nel MOSFETs, Drain-Current Model, MOSFET I-V Characteristics,	Su	bthr	esho	ld
e	ics, Substrate Bias and Temperature Dependence of Threshold Volta				
	bility, MOSFET Capacitances and Inversion-Layer Capacitance Effect,	-			
	Short-Channel Effect, Velocity Saturation and High-Field Transport C				
	Source-Drain Series Resistance, MOSFET Degradation and Breakd			-	
Fields	ý č				2
UNIT III	CMOS DEVICE DESIGN				9
	aling, Constant-Field Scaling, Generalized Scaling, Nonscaling Effe	ects,	Th	esho	
	reshold-Voltage Requirement, Channel Profile Design, Nonuniform Do				
Effect on T	hreshold Voltage, Discrete Dopant Effects on Threshold Voltage, MO	SFE	ΤČ	hanı	ıel
	rious Definitions of Channel Length, Extraction of the Effective Ch				
-	leaning of Effective Channel Length, Extraction of Channel Le	ngth	by	C-	-V
Measuremen					
UNIT IV	BIPOLAR DEVICES				9

Modifying the Simple Diode Theory for Describing Bipolar Transistors, Ideal Current–Voltage Characteristics, Ideal IC–VCE Characteristics, Characteristics of a Typical n–p–n Transistor, Effect of Emitter and Base Series Resistances, Effect of Base–Collector Voltage on Collector Current, Collector Current Falloff at High Currents, Non ideal Base Current at Low Currents, Bipolar Device Models for Circuit and Time-Dependent Analyses Basic dc Model, Basic ac Model, Small-Signal Equivalent-Circuit Model, Emitter Diffusion Capacitance, Charge-Control Analysis, Breakdown Voltages, Common-Base Current Gain in the Presence of Base–Collector Junction Avalanche, Saturation Currents in a Transistor.

UNIT V MATHEMATICAL TECHNIQUES FOR DEVICE SIMULATIONS

Poisson equation, continuity equation, drift-diffusion equation, Schrodinger equation, hydrodynamic equations, trap rate, finite difference solutions to these equations in 1D and 2D space, grid generation.

SUGGESTED ACTIVITIES:

- 1. Simulate characteristics of a simple semiconductor devices using MATLAB, SPICE and ATLAS / SYNOPSYS
- 2. Compact models for MOSFET and their implementation in SPICE-
- 3. Level 1, 2 and 3, MOS model parameters in SPICE

TOTAL: 75 PERIODS

TOTAL: 45 PERIODS

30 PERIODS

9

COU	URSI	E OUTCOMES:							
At t	At the end of the course, the students will be able to:								
CC	CO1: Explain the properties of MOS capacitors.								
CC	CO2: Illustrate the CMOS design parameters and their impact on performance of the device.								
CC)3:	Summarize the device level characteristics of BJT transistors.							
CC)4:	Identify the suitable mathematical technique for device simulation.							
CC)5:	Analyze the various characteristics of MOSFET devices.							
REF	FERI	ENCES:							
1.	Yua	an Taur and Tak H.Ning, "Fundamentals of Modern VLSI Devices", Cambridge							
	University Press, 2016.								
2.	A.B. Bhattacharyya "Compact MOSFET Models for VLSI Design", John Wiley & Sons Ltd,								
	200								
3.	Ansgar Jungel, "Transport Equations for Semiconductors", Springer, 2009								
4.	Trond Ytterdal, Yuhua Cheng and Tor A. Fjeldly Wayne Wolf, "Device Modeling for Analog								
	and RF CMOS Circuit Design", John Wiley & Sons Ltd, 2004								
5.	Selberherr, S., "Analysis and Simulation of Semiconductor Devices", Springer-Verlag., 1984								
6.	Behzad Razavi, "Fundamentals of Microelectronics" Wiley Student Edition, 2 nd Edition, 2014								
7.	J P	Collinge, C A Collinge, "Physics of Semiconductor devices" 2 nd Edition, Springer, 2006							
8.	S.M	I.Sze, Kwok.K. NG, "Physics of Semiconductor devices", Springer, 2006							

Mapping of Course Outcomes to Programme Outcomes

Course	Programme Outcomes									
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	1	2	1	1	1				
CO2	2	1	2	1	1	1				
CO3	2	1	2	1	2	2				
CO4	2	1	2	1	1	1				
CO5	2	1	2	1	2	2				
СО	2	1	2	1	1.4	1.4				

Unit No. and Title	Total 2	Total 16		(Cogniti	ve Leve	el		
	Marks	Marks	Remember	Under	stand	Ар	oly	Analyse(An)	
	Qus.	Qus.	(Kn)	(Ui	n)	(A	p)	Evaluate(Ev)	
Unit I : MC	DS 2	1either	2(2)- CO1	1eithe	er or			-	
CAPACITORS		or		(16)-0	CO1	-			
Unit-II: MOSFE	ET 2	1either	1(2)-CO2	1(2)-0	CO2			-	
DEVICES		or		1eithe	er or				
				(16)-0	CO2				
Unit-III: CMC	DS 2	1 either				1(2)-		-	
DEVICE DESIGN		or	-	1(2)-0	CO3	1eith			
						(16)-	CO3		
Unit-IV: BIPOLA	R 2	1either	1(2)-CO4	1(2)-0	CO4	-		-	
DEVICES		or		1eithe	er or				
				(16)-0	CO4				
Unit-V:	2	1either	1(2)-CO5	1(2)-0	CO5	-		-	
MATHEMATICAI		or							
TECHNIQUES FO	R			1eithe					
DEVICE				(16)-0	CO5				
SIMULATIONS									
Total Title	: 10	5either	5(2)	4(2	/	1 eith		-	
AE22201	-	or		4 eith		(10	6)		
SEMICONDUCTO				(16	5)				
DEVICES AN	D								
MODELING			10				-		
Total Marks	20	80	10	72		18		-	
Weightage			%	18	%	-			
ГГ	GO 1		ightage for C						
	<u>CO1</u>	CO2	CC		<u> </u>			CO5	
Total Marks	20	20	20	-	2	-		20	
Weightage	20%	20%	209	%	20	% 2		20%	

AE22202	ADVANCED DIGITAL SIGNAL PROCESSING	L	Τ	P	С					
COURSE (COURSE OBJECTIVES:									
•	• To describe fundamental concepts of DSP and Discrete Transforms									
•	To design digital filters design									
•	To estimate power spectrum using non- parametric and parametric methods									
•	• To analyze the Multirate Signal processing by decimation and interpolation.									
•	• To apply the concept of Multirate signal processing for various applications									
UNIT I	DIGITAL SIGNAL PROCESSING				9					
Sampling o	f analog signals - Selection of sampling frequency - Frequency respo	onse	- T	rans	sfer					
functions - I	Filter structures - Fast Fourier Transform (FFT) Algorithms - Image codin	g - D	DCT	•						
UNIT II	DIGITAL FILTER DESIGN				9					
IIR and FIR Filters: Filter structures, Implementation of Digital Filters - 2nd Order Narrow Band										
Filter and 1st Order All Pass Filter, Frequency sampling structures of FIR, Lattice structures,										
Forward an	d Backward prediction error filters, Reflection coefficients for latti	ce r	eali	zatio	on,					

Kon-Parametric Methods: Estimation of spectra from finite duration observation of signals,: Bartlett, Velch & Blackman-Tukey methods, Performance Comparison. Parametric Methods: Vuccorrelation & Its Properties, Relation between auto correlation & model parameters, AR Models - Yule-Walker & Burg Methods, MA & ARMA models for power spectrum estimation. INIT IV MULTI RATE SIGNAL PROCESSING 9 Decimation by a factor D - Interpolation by a factor I - Sampling rate conversion by a rational factor 7 ON Multistage Implementation of Sampling Rate Conversion, Filter design and Implementation for ampling rate conversion. Up-sampling using All Pass Filter. 9 INIT V APPLICATIONS OF MULTI RATE SIGNAL PROCESSING AND DSP 9 V INTEGRATED CIRCUITS 9 Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, mplementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Subband Coding of Speech Signals, Quadrature Mirror Filters, Over Sampling Alz and D/A Conversion. 9 UGGESTED ACTIVITIES: 30 PERIODS 1 Design of Adaptive channel equalizer 2 2. Realization of SUB and filter using linear convolution 3 3. Realization of FIR Wiener filter 4 4. Demonstration of Min-max technique 5 5. Deemonstration of Ha 2D image signal as the linear	UNIT III Non-Paran Welch & Autocorre Models - Y	ESTIMATION OF POWER SPECTRUM9metric Methods: Estimation of spectra from finite duration observation of signals,: Bartlett, & Blackman-Tukey methods, Performance Comparison. Parametric Methods elation & Its Properties, Relation between auto correlation & model parameters, AR		
kon-Parametric Methods: Estimation of spectra from finite duration observation of signals,: Bartlett, Velch & Blackman-Tukey methods, Performance Comparison. Parametric Methods: Nutocorrelation & Its Properties, Relation between auto correlation & model parameters, AR Adoels - Yule-Walker & Burg Methods, MA & ARMA models for power spectrum estimation. INIT IV MULTI RATE SIGNAL PROCESSING 9 Decimation by a factor D - Interpolation by a factor I - Sampling rate conversion by a rational factor 0, Multistage Implementation of Sampling Rate Conversion, Filter design and Implementation for ampling rate conversion. Up-sampling using All Pass Filter. 9 INIT V APPLICATIONS OF MULTI RATE SIGNAL PROCESSING AND DSP 9 INTEGRATED CIRCUITS 9 Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, mplementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Subband Coding of Speech Signals, Quadrature Mirror Filters, Over Sampling AlD and D/A Conversion. 9 IUGGESTED ACTIVITIES: 30 PERIODS 1. Design of Adaptive channel equalizer 2 2. Realization of SUFT using FFT 4 4. Demonstration of Min-max technique 5 5. Demonstration of HIR Wiener filter 7 6. Realization of FIR Wiener filter 7 7. Generation of Multivariate Gaussian generated data	Non-Parat Welch & Autocorre Models - Y	metric Methods: Estimation of spectra from finite duration observation of signals,: Bartlett, & Blackman-Tukey methods, Performance Comparison. Parametric Methods lation & Its Properties, Relation between auto correlation & model parameters, AR		
Velch & Blackman-Tukey methods. Performance Comparison. Parametric Methods: Nutocorrelation & Its Properties, Relation between auto correlation & model parameters, AR Models - Yule-Walker & Burg Methods, MA & ARMA models for power spectrum estimation. INIT IV MULTI RATE SIGNAL PROCESSING 9 Decimation by a factor D - Interpolation by a factor I - Sampling rate conversion by a rational factor D, Multistage Implementation of Sampling Rate Conversion, Filter design and Implementation for ampling rate conversion. Up-sampling using All Pass Filter. INIT V APPLICATIONS OF MULTI RATE SIGNAL PROCESSING AND DSP INTEGRATED CIRCUITS 9 Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, mplementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Subband Coding of Speech Signals, Quadrature Mirror Filters, Over Sampling A/D and D/A Conversion. 9 UGGESTED ACTIVITIES: 30 PERIODS I. Design of Adaptive channel equalizer 2. Realization of STFT using IFFT 30 PERIODS J. Demonstration of Min-max technique 5. Demonstration of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10.	Welch & Autocorre Models - Y	& Blackman-Tukey methods, Performance Comparison. Parametric Methods: lation & Its Properties, Relation between auto correlation & model parameters, AR		
Models - Yule-Walker & Burg Methods, MA & ARMA models for power spectrum estimation. 9 INIT IV MULTI RATE SIGNAL PROCESSING 9 Decimation by a factor D - Interpolation by a factor I - Sampling rate conversion by a rational factor D, Multistage Implementation of Sampling Rate Conversion, Filter design and Implementation for ampling rate conversion. Up-sampling using All Pass Filter. 9 INIT V APPLICATIONS OF MULTI RATE SIGNAL PROCESSING AND DSP 9 INTEGRATED CIRCUTTS 9 Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, mplementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Subband Coding of Speech Signals, Quadrature Mirror Filters, Over Sampling A/D and D/A Conversion. 9 UGGESTED ACTIVITIES: 30 PERIODS UGGESTED ACTIVITIES: 30 PERIODS 1 Design of Adaptive channel equalizer 30 PERIODS 2 Realization of STFT using FFT 4 4 Demonstration of Mane at cchnique 5 5 Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9 9 Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO)	Models -			
INIT IV MULTI RATE SIGNAL PROCESSING 9 Decimation by a factor D - Interpolation by a factor I - Sampling rate conversion by a rational factor D, Multistage Implementation of Sampling Rate Conversion, Filter design and Implementation for ampling rate conversion. Up-sampling using All Pass Filter. VINT V APPLICATIONS OF MULTI RATE SIGNAL PROCESSING AND DSP INTEGRATED CIRCUITS 9 Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, mplementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Subband 20ding of Speech Signals, Quadrature Mirror Filters, Over Sampling A/D and D/A Conversion. TOTAL: 45 PERIODS UGGESTED ACTIVITIES: 30 PERIODS 1 Design of Adaptive channel equalizer 30 PERIODS 2 Realization of SUFT using FFT 4 4 Demonstration of Min-max technique 5 5 Demonstration of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8 Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9 Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM)		1 ulc walkel ∞ Duly Methods, MA ∞ AKMA models for hower spectrum estimation.		
Decimation by a factor D - Interpolation by a factor I - Sampling rate conversion by a rational factor D, Multistage Implementation of Sampling Rate Conversion, Filter design and Implementation for ampling rate conversion. Up-sampling using All Pass Filter. INIT V APPLICATIONS OF MULTI RATE SIGNAL PROCESSING AND DSP INTEGRATED CIRCUITS 9 Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, mplementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Subband Ording of Speech Signals, Quadrature Mirror Filters, Over Sampling AD and D/A Conversion. TOTAL: 45 PERIODS UGGESTED ACTIVITIES: 30 PERIODS 1. Design of Adaptive channel equalizer 2. 2. Realization of Sub band filter using linear convolution 3. 3. Realization of STFT using FFT 4. 4. Demonstration of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8. 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9. 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) 12. CO1: Explain the basics of Digital Signal Processing, Discrete Time Transfor	UINTITY			
D, Multistage Implementation of Sampling Rate Conversion, Filter design and Implementation for ampling rate conversion. Up-sampling using All Pass Filter. INIT V APPLICATIONS OF MULTI RATE SIGNAL PROCESSING AND DSP 9 INTEGRATED CIRCUITS 9 Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, mplementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Subband Coding of Speech Signals, Quadrature Mirror Filters, Over Sampling A/D and D/A Conversion. 9 TOTAL: 45 PERIODS 30 PERIODS UGGESTED ACTIVITIES: 30 PERIODS UGGESTED ACTIVITIES: 30 PERIODS 1 Design of Adaptive channel equalizer 2. Realization of sub band filter using linear convolution 3. Realization of STFT using FFT 4. Demonstration of Min-max technique 5. Demonstration of Min-max technique 6. Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) <td <="" colspan="2" td=""><td>Decimatio</td><td>on by a factor D - Interpolation by a factor I - Sampling rate conversion by a rational factor</td></td>	<td>Decimatio</td> <td>on by a factor D - Interpolation by a factor I - Sampling rate conversion by a rational factor</td>		Decimatio	on by a factor D - Interpolation by a factor I - Sampling rate conversion by a rational factor
APPLICATIONS OF MULTI RATE SIGNAL PROCESSING AND DSP INTEGRATED CIRCUITS 9 Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, mplementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Subband Coding of Speech Signals, Quadrature Mirror Filters, Over Sampling A/D and D/A Conversion. TOTAL: 45 PERIODS UGGESTED ACTIVITIES: 30 PERIODS 1. Design of Adaptive channel equalizer 30 PERIODS 2. Realization of Sub band filter using linear convolution 3. Realization of STFT using FFT 4. Demonstration of Bayes technique 5. Demonstration of Min-max technique 6. Realization of FIR Wiener filter 7. Generation of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9. 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS CO11: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits DSP CO2: Construct FIR/IIR digital filters using various structures DSP CO3: Discuss the various field effects in digita	I/D, Multi	stage Implementation of Sampling Rate Conversion, Filter design and Implementation for		
INTEGRATED CIRCUITS Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, mplementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Subband Yoding of Speech Signals, Quadrature Mirror Filters, Over Sampling A/D and D/A Conversion. TOTAL: 45 PERIODS UGGESTED ACTIVITIES: 30 PERIODS 10 Design of Adaptive channel equalizer 2. Realization of sub band filter using linear convolution 3. Realization of STFT using FFT 4. Demonstration of Bayes technique 5. 5. Demonstration of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURES: At the end of the course, the students will be able to: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures				
mplementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Subband Coding of Speech Signals, Quadrature Mirror Filters, Over Sampling A/D and D/A Conversion. TOTAL: 45 PERIODS UGGESTED ACTIVITIES: 30 PERIODS 1. Design of Adaptive channel equalizer 2. Realization of sub band filter using linear convolution 3. Realization of STFT using FFT 4. Demonstration of Bayes technique 5. Demonstration of Min-max technique 6. Realization of FIR Wiener filter 7. Generation of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest- descent algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures CO3: Discuss the various field effects in digital signal processing at different sampling frequencies CO3: Analyze the applications of multi rate signal processing at different sampling frequencies CO3: Analyze multi rate signal processing and power spectrum using appropriate	UNIT V	INTEGRATED CIRCUITS		
Coding of Speech Signals, Quadrature Mirror Filters, Over Sampling A/D and D/A Conversion. TOTAL: 45 PERIODS UGGESTED ACTIVITIES: 30 PERIODS 1. Design of Adaptive channel equalizer 30 PERIODS 2. Realization of sub band filter using linear convolution 3. 3. Realization of STFT using FFT 4. 4. Demonstration of Bayes technique 5. 5. Demonstration of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: tit the end of the course, the students will be able to: Construct FIR/IIR digital filters using various structures Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits Construct FIR/IIR digital filters using various structures Discuss the various field effects in digit				
TOTAL: 45 PERIODS UGGESTED ACTIVITIES: 30 PERIODS 1. Design of Adaptive channel equalizer 2. Realization of sub band filter using linear convolution 3. Realization of sub band filter using linear convolution 3. Realization of STFT using FFT 4. Demonstration of Mayes technique 5. Demonstration of Min-max technique 6. Realization of FIR Wiener filter 7. Generation of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO3: Oiscuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze multi rate signal processing and power spectrum using appropriate <td></td> <td></td>				
UGGESTED ACTIVITIES: 30 PERIODS 1. Design of Adaptive channel equalizer 2. Realization of sub band filter using linear convolution 3. Realization of sub band filter using linear convolution 3. Realization of STFT using FFT 4. Demonstration of Bayes technique 5. Demonstration of Min-max technique 6. Realization of FIR Wiener filter 7. Generation of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: TOTAL: 75 PERIODS CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures CO3: biscuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze the applications of multi rate signal processing and power spectrum using appropriate	Coding of			
 Design of Adaptive channel equalizer Realization of sub band filter using linear convolution Realization of STFT using FFT Demonstration of Bayes technique Demonstration of Min-max technique Realization of FIR Wiener filter Generation of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) Image compression using Discrete cosine transformation (DCT). Multiple-input Multiple output (MIMO) Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze the applications of multi rate signal processing and power spectrum using appropriate 	CUCCES			
 2. Realization of sub band filter using linear convolution Realization of STFT using FFT Demonstration of Bayes technique Demonstration of Min-max technique Realization of FIR Wiener filter Generation of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) Image compression using Discrete cosine transformation (DCT). Multiple-input Multiple output (MIMO)				
 3. Realization of STFT using FFT 4. Demonstration of Bayes technique 5. Demonstration of Min-max technique 6. Realization of FIR Wiener filter 7. Generation of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures CO3: Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze the applications of multi rate signal processing at different sampling frequencies 				
 4. Demonstration of Bayes technique 5. Demonstration of Min-max technique 6. Realization of FIR Wiener filter 7. Generation of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures CO3: Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze the applications of multi rate signal processing and power spectrum using appropriate 				
 5. Demonstration of Min-max technique 6. Realization of FIR Wiener filter 7. Generation of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze the applications of multi rate signal processing and power spectrum using appropriate 	3. Re	calization of STFT using FFT		
 6. Realization of FIR Wiener filter 7. Generation of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO3: Analyze the applications of multi rate signal processing at different sampling frequencies	4. De	emonstration of Bayes technique		
 7. Generation of Multivariate Gaussian generated data with desired mean vector and the required co-variance matrix 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures CO3: Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze the applications of multi rate signal processing and power spectrum using appropriate 				
required co-variance matrix 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent_algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Onstruct FIR/IIR digital filters using various structures CO3: Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze multi rate signal processing and power spectrum using appropriate	6. Re	ealization of FIR Wiener filter		
 8. Design and Realization of the adaptive filter using LMS algorithm (solved using steepest-descent_algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO3: Analyze the applications of multi rate signal processing at different sampling frequencies CO5: Analyze multi rate signal processing and power spectrum using appropriate 	7. Ge	eneration of Multivariate Gaussian generated data with desired mean vector and the		
descent algorithm) 9. Representation of the 2D image signal as the linear combinations of PCA (Eigen faces) 10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures CO3: Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze the applications of multi rate signal processing at different sampling frequencies CO5: Analyze multi rate signal processing and power spectrum using appropriate				
10. Image compression using Discrete cosine transformation (DCT). 11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: Construct File/IIR digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures CO3: Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze multi rate signal processing and power spectrum using appropriate	des	scent algorithm)		
11. Multiple-input Multiple output (MIMO) 12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze the applications of multi rate signal processing at different sampling frequencies CO5: Analyze multi rate signal processing and power spectrum using appropriate	9. Re	presentation of the 2D image signal as the linear combinations of PCA (Eigen faces)		
12. Speech recognition using Support Vector Machine (SVM) TOTAL: 75 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures CO3: Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze the applications of multi rate signal processing at different sampling frequencies CO5: Analyze multi rate signal processing and power spectrum using appropriate	10. Im	age compression using Discrete cosine transformation (DCT).		
TOTAL: 75 PERIODS COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze the applications of multi rate signal processing and power spectrum using appropriate				
COURSE OUTCOMES: At the end of the course, the students will be able to: CO1: Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuits CO2: Construct FIR/IIR digital filters using various structures CO3: Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze the applications of multi rate signal processing and power spectrum using appropriate	12. Sp	eech recognition using Support Vector Machine (SVM)		
At the end of the course, the students will be able to:CO1:Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuitsCO2:Construct FIR/IIR digital filters using various structuresCO3:Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuitsCO4:Analyze the applications of multi rate signal processing at different sampling frequenciesCO5:Analyze multi rate signal processing and power spectrum using appropriate		TOTAL: 75 PERIODS		
CO1:Explain the basics of Digital Signal Processing, Discrete Time Transforms and DSP Integrated circuitsCO2:Construct FIR/IIR digital filters using various structuresCO3:Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuitsCO4:Analyze the applications of multi rate signal processing at different sampling frequenciesCO5:Analyze multi rate signal processing and power spectrum using appropriate				
CO1: Integrated circuits CO2: Construct FIR/IIR digital filters using various structures CO3: Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze the applications of multi rate signal processing at different sampling frequencies CO5: Analyze multi rate signal processing and power spectrum using appropriate		,		
 CO3: Discuss the various field effects in digital signal processing and the procedure involved in the fabrication of DSP Integrated circuits CO4: Analyze the applications of multi rate signal processing at different sampling frequencies CO5: Analyze multi rate signal processing and power spectrum using appropriate 	COI:	Integrated circuits		
CO3:the fabrication of DSP Integrated circuitsCO4:Analyze the applications of multi rate signal processing at different sampling frequenciesCO5:Analyze multi rate signal processing and power spectrum using appropriate				
CO5: Analyze multi rate signal processing and power spectrum using appropriate	003:	the fabrication of DSP Integrated circuits		
parametric non parametric methods	1 1 1 2 1	Analyze multi rate signal processing and power spectrum using appropriate parametric/non-parametric methods		
REFERENCES:				
J.G.Proakis & D. G.Manolakis Digital Signal Processing: Principles, Algorithms & Applications -, 4 th Ed., Pearson Education, 2013				
River Publishers Series in Signal, Image and Speech Processing, USA, 2021.				
Solivahanan "Digital Signal Processing" (th Edition McCrew Hill 2010	3. Saliv	vahanan," Digital Signal Processing",4 th Edition,McGraw Hill,2019.		

4.	Shivkumar Venkatraman Iyer," Digital Filter Design using Python for Power Engineering
	Applications", Springer Nature, 2020.
5.	Alan V Oppenheim & Ronald W Schaffer Discrete Time signal processing, Pearson
	Education, 2014.
6.	Keshab K. Parhi, 'VLSI Digital Signal Processing Systems Design and Implementation", John
	Wiley& Sons, 2007
7.	Steven. M .Kay, Modern Spectral Estimation: Theory & Application – PHI, 2009
8.	P.P.Vaidyanathan, Multi Rate Systems and Filter Banks, Pearson Education, 1993

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
C01	2	1	2	2	2	1			
CO2	2	1	2	2	2	1			
CO3	2	1	2	2	2	1			
CO4	2	1	2	2	2	1			
CO5	2	1	2	2	2	1			
СО	2	1	2	2	2	1			

Unit No. and	Total 2	Total 16		Cogniti	ive Level	
Title	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I: DIGITAL	2	1either or	2(2)-CO1	1either or	-	-
SIGNAL				(16)-CO1		
PROCESSING						
Unit-II:	2	1either or	2(2)-CO2	1either or	-	-
DIGITAL				(16)-CO2		
FILTER						
DESIGN						
Unit-III:	2	1either or	1(2)-CO3	1(2)-CO3	-	-
ESTIMATION OF				1either or		
POWER				(16)-CO3		
SPECTRUM				· · ·		
Unit-IV: MULTI	2	1either or	1(2)-CO3	1(2)-CO3	1either or	-
RATE SIGNAL					(16)-CO4	
PROCESSING						
Unit-V:	2	1either or	1(2)-CO3	1(2)-CO5		-
APPLICATIONS				1either or		
OF MULTI RATE				(16)-CO5		
SIGNAL PROCESSING						
AND DSP						
INTEGRATED						
CIRCUITS						
Total Qns. Title:	10	5either or	7(2)	3(2)	1 either or	_
			. (-)	4 either or	(16)	
				(16)	(10)	

Total Marks	20	80	14	70	16	5	_		
Weightage	20%	80%	14%	70%	169	%	-		
Weightage for COs									
	CO1	CO	02 0	203	CO4		CO5		
Total Marks	20	2	0	20	20		20		
Weightage	20%	20	9% 2	0%	20%		20%		

AE22203 EMBEDDED SYSTEMS	L	Т	Р	С
	3	0	2	4
COURSE OBJECTIVES:				
Learn Embedded design challenges and design methodologies				
Study general and single purpose processor				
Understand bus structures				
Design a state machine and concurrent process models				
Know about Embedded software development tools and RTOS				
UNIT I EMBEDDED SYSTEM OVERVIEW				9
Embedded System Overview, Design Challenges - Optimizing Design				
Methodology, RT-Level Combinational and Sequential Components, Optimizing	Cus	tom	Sing	gle-
Purpose Processors.				
UNIT II GENERAL AND SINGLE PURPOSE PROCESSOR				9
Basic Architecture, Pipelining, Superscalar and VLIW architectures, Prog				
Development Environment, Application-Specific Instruction-Set Proce			ASI	
Microcontrollers, Timers, Counters and watchdog Timer, UART, LCD Controller	s and	Ana	alog-	-to-
Digital Converters, Memory Concepts.				
UNIT III BUS STRUCTURES				9
Basic Protocol Concepts, Microprocessor Interfacing – I/O Addressing, Port and				
Arbitration, Serial Protocols, I2C, CAN and USB, Parallel Protocols – PCI	and	AR	ИΒ	us,
WirelessProtocols – IrDA, Bluetooth, IEEE 802.11.				9
UNIT IV STATE MACHINE AND CONCURRENT PROCESS MODELS	a Ct	ata N	Icah	-
Basic State Machine Model, Finite-State Machine with Data path Model, Capturin in Sequential Programming Language, Program-State Machine Model, Concurrent	0			
Communication among Processes, Synchronization among processes, Dataflow				
Systems, Automation: Synthesis, Verification : Hardware/Software Co-Sir				
Intellectual Property Cores, Design Process Models	iuiui	011,	net	150.
UNIT V EMBEDDED SOFTWARE DEVELOPMENT TOOLS AND RTO	2			9
Compilation Process – Libraries – Porting kernels – C extensions for em		ed s	vste	-
– emulation and debugging techniques – RTOS – System design using RTO				
Embedded system in IOT.				
ΤΟΤΑ	L:45	PE	RIO	DS
SUGGESTED ACTIVITIES:	-			
1: Insist students to write a requirements form for a smart phone				
2: Compare different Microcontrollers for a particular ESD.				
3: Application of a protocol for a specified application.4: Write an Embedded C code for a given task.				
5: Design an Embedded system for any type of real time application	30	DITE		DC
PRACTICAL LIST:	50	PEF		05
Exercise – 1				
LACICISC - 1				

based and Non – FPGA based (defined logic) embedded system development. (For Example: consider any Spartan FPGA board for FPGA based Embedded System Considerany cortex-M based board for Non – FPGA based Embedded system)

Exercise - 2

Implement adder and decoder logic blocks in any one of the FPGA chip based development board.

Exercise - 3

Design and development of UART protocol logic block in any one of FPGA chip based development board.

Exercise-4

Consider on board LEDS (any four) and timer logic block of cortex- M board. Write a program which enables LEDS to glow in different timing

Exercise – 5

Consider on board switches and (2x16) LCD display develop a program which displays the status of switch activation

Exercise-6

Demonstrate GPIO based I/O interfacing by considering LM 35 temperature sensor and cortex-M board

Exercise - 7

Development of one interfacing scheme which transmits data from one cortex- M board to another cortex- M board using on chip CAN logic blocks

Exercise - 8

Consider on board EPROM IC of Cortex- M board by utilizing on chip I2c logic block transmit data to EPROM IC and receive stored data from EPROM IC

Exercise - 10

Consider two ultrasonic sensors which are interfaced with cortex- M board. Both are located some distance (2 meters) apart vertically so that the system can identify the movement of object in term of distance. consider data reception and display of each sensor as two different tasks by RTOS. Establish a RTOS based system to recognize the height of moving object

OBJECTIVE:

• Able to understand embedded system design flow in FPGA chip based and Non – FPGA chip based embedded development boards

TOTAL : 75 PERIODS

- Able to create simple logic blocks in FPGA chip based boards
- Able to understand interfacing scheme for Non FPGA board scheme for Non FPGA
- Able to utilize RTOS functions for interfacing practice

REQUIREMENTS:

- Hardware and Software requirements
- 1. Cortex- M board and simulation tools
- 2. FPGA EVM Board and simulation tools
- 3. Ultrasonic sensor
- 4. Any portable open source RTOS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

CO1:	Explain Embedded System architecture, different protocols and its overview.
------	---

- **CO2:** Summarize the general and single purpose processor.
- **CO3:** Interpret the different bus protocols
- **CO4:** Illustrate state machine and design process models
- **CO5:** Outline embedded software development tools and RTOS

CC	D6: Develop simple logic blocks in FPGA chip-based boards.
REF	TERENCES:
1.	Marilyn Wolf, "Embedded System Interfacing: Design for the Internet-of-Things (IoT) and Cyber-Physical Systems(CPS)", Elsevier, 4 th Edition 2019.
2.	Cem Unsalan, Huseyin Deniz Gurhan, Mehmet Erkin Yucel, "Embedded System Design with
	Arm Cortex-M Microcontrollers: Applications with C, C++ and MicroPython", Springer,
	2022.
3.	Frank Vahid and Tony Gwargie, "Embedded System Design", John Wiley & sons, 2002.
4.	Steve Heath, "Embedded System Design", Elsevier, Second Edition, 2004
5.	Arockia Bazil Raj A., " Embedded System Developer's Guide", CRC Press, 2018.
6.	Jim Ledin, "Architecting High-Performance Embedded Systems: Design and build high-
	performance real-time digital systems based on FPGAs and custom circuits", Packt Publishing,
	2021.

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	2	1	2	1			
CO2	2	-	2	1	2	1			
CO3	2	-	2	1	2	1			
CO4	2	-	2	1	2	1			
CO5	2	-	2	1	2	1			
СО	2	-	2	1	2	1			

Unit No. and Title	Total 2	Total 16	Cognitive Level					
	Marks	Marks	Remember	Understand	Apply	Analyse(An)		
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)		
Unit-I: EMBEDDED	2	1either or	2(2)-CO1	1either or	-	-		
SYSTEM OVERVIEW				(16)-CO1				
Unit-II:	2	leither or	2(2)-CO2	1either or	-	-		
GENERAL AND				(16)-CO2				
SINGLE PURPOSE								
PROCESSOR								
Unit-III:	2	1either or	1(2)-CO3	1(2)-CO3	-	-		
BUS STRUCTURES				1 either or				
				(16)-CO3				
Unit-IV: STATE	2	1either or	1(2)-CO4	1(2)-CO4	-	-		
MACHINE AND								
CONCURRENT				1 either or				
PROCESS MODELS				(16)-CO4				
Unit-V:	2	1either or	2(2)-CO5	1either or		-		
EMBEDDED				(16)-CO5				
SOFTWARE								
DEVELOPMENT								
TOOLS AND RTOS								

Total Qns. Title:	10	5either or	8(2)	2(2)	-	-			
AE22203 :				5 either or					
EMBEDDED				(16)					
SYSTEMS									
Weightage for COs									

	Weightage for COs									
	CO1	CO2	CO3	CO4	CO5					
Total Marks	20	20	20	20	20					
Weightage	20%	20%	20%	20%	20%					

AE2220	5 VLSI DESIGN LABORATORY	L	Т	Р	С			
		0	0	4	2			
OBJECT	TVES:							
	• Familiarize with different FPGA boards							
	• Analyze digital design using Front end Tools							
	• Analyze the CMOS circuits using CAD tools							
	• Analyze the interfacing of I/O devices with Arduino Boards using	Emb	eddeo	d C				
LIST OF	EXPERIMENTS							
1.	Synthesize and implement Combinational and Sequential Circuits in V	/ERII	JOG	/VHI	DL			
2.	Synthesize and implement MAC unit and GCD unit in Verilog /VHDI	L						
3.	Implementation of sampling of input signal and display in FPC implement FIR filter and IIR filter Verilog /VHDL	GA Sy	nthe	size	and			
4.	Synthesize and implement 8 bit general purpose processor in Verilog/	VHDI						
5.	Synthesize and implement UART and USART							
6.	Simulation and Analysis of CMOS combinational and sequential CAD tools	logic	circu	its u	sing			
	TOT	TAL:	60 PI	ERIC	DDS			
	E OUTCOMES:							
At the en	d of the course, the students will be able to:							
CO1:	Program in Verilog/VHDL for combinational and sequential circuits	and i	mple	ement	the			
	program in FPGA							
CO2:	Implement FIR and IIR filters in FPGA							
CO3:	Implement data path design and interfaces							
CO4:	Handle CAD tools to draw/edit, and analyze the CMOS circuits.							
CO5:	Program and interface the Arduino Boards using Embedded C							

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	1	-	2	2	1			
CO2	-	1	2	-	1	-			
CO3	1	-	2	2	-	1			
CO4	2	1	1	-	-	2			
CO5	-	1	2	-	-	-			
СО	1.6	1	1.8	2	1.5	1.3			

RM2220	1 RESEARCH TOOLS LABORATORY	L	Τ	Р	C			
		0	0	4	2			
OBJECT	IVES:							
•	To familiarize the fundamental concepts/techniques for Project Manag	gemen	t					
•	To familiarize the journal paper formatting using suitable Software							
٠	To familiarize the software for literature review and Bibliography							
٠	To find the plagiarism percentage of article contents							
•	To prepare a quality research report and the presentation							
LIST OF	EXPERIMENTS							
1.	Use of tools / Techniques for Research - Project management -Microsoft	oft Pro	ject /	,				
1.	Microsoft OneNote / Asana.							
2.	Hands on Training related to Software for Paper Formatting like LaTe	X / M	S Of	fice				
3.	Design a Layout of a Research Paper - Guidelines for Submitting th	e Res	earch	n Pap	er -			
5.	Review Process - Addressing Reviewer Comments.							
4.	Introduction to Data Analysis Software - Origin SPSS, ANOVA etc.,							
5.	Introduction to Software for detection of Plagiarism - Urkund, Turnito							
6.	Preparing Bibliography / Different Reference Formats EndNote, Me							
_	Format of Project Report - Use of Quotations - Method of Transcription							
7.	Page - Abstract - Table of Contents - Headings and Sub-Headings -	Footr	otes	- Ta	bles			
0	and Figures							
8.	Introduction to Microsoft Excel –for Research Analysis							
9.	Presentation using PPTs.	.		DIC				
COUDSI	COUTCOMES:	TAL:	ov Pl	CKIC	102			
	d of the course, the students will be able to:							
At the en	List the various stages in research and develop systematic planning	r of r	roio	nt ata	a a c			
CO1:	(Analysing)	gorp	lojet	i sta	ges.			
CO2:	Write a journal paper and formulate as per the standard journal format	(Ann	lving)				
	Develop a literature review and relevant references for a resea	rch n	roble	<u>/</u> m_us	sing			
CO3:	suitable(Applying)							
CO4:	Determine the plagiarism of the article / report content by using the So	ftware	(Ar	plyir	ıg)			
CO5:	Compile a research report and the presentation (Applying)		`_ _	~ *	<u>, ,</u>			

SEMESTER III

AE22301	INPLANT / INDUSTRIAL / PRACTICAL TRAINING	L	Т	Р	С				
		0	0	4	2				
COURSE O	COURSE OBJECTIVE:								
• To ta	• To train the students in the field work so as to have first-hand knowledge of practical								
probl	ems in carrying out engineering tasks.								
SYLLABUS	: :								
The students	individually undertake training in reputed companies /organization du	uri	ng tl	he sui	mmer				
vacation for	a specified duration of four weeks. At the end of training, a detailed re	epc	ort o	n the	work				
done should	done should be submitted within ten days from the commencement of the semester. The students								
will be evalu	will be evaluated through a viva-voce examination by a team of internal staff.								
TOTAL: 120 PERIODS									

TOTAL: 120 PERIODS

AE22302	PROJECT WORK I	L	Т	Р	С		
		0	0	6	3		
COUDCEO							

COURSE OBJECTIVES:

• To identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature.

• To develop the methodology to solve the identified problem.

• To train the students in preparing project reports and to face reviews and viva-voce examination.

SYLLABUS:

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

TOTAL: 90 PERIODS

COURSE OUTCOME:

At the end of the course, the students will be able to:

CO1:	Develop the ability to solve a specific problem right from its identification and literature	
COI.	review till the successful solution and prepare project reports.	

SEMESTER IV

AE22401	PROJECT WORK II	L	Τ	Р	С
		0	0	24	12
COURSE (DBJECTIVES:				
• To s	olve the identified problem based on the formulated methodology.				
• To d	evelop skills to analyze and discuss the test results, and make conclu	usions			
SYLLABU	S				
The	student should continue the phase I work on the selected topic as	s per t	he f	ormu	lated
methodolog	gy / Undergo internship. At the end of the semester, after comple	ting th	ne w	ork to	o the
satisfaction	of the supervisor and review committee, a detailed report shou	ıld be	pre	pared	and
submitted (to the head of the department. The students will be evaluated based	on the	rep	ort an	d the
viva-voce e	examination by a panel of examiners including one external examined	er.			
	TOTA	AL:3	60 F	PERI	ODS
COURSE (DUTCOMES:				
At the end	of the course, the students will be able to:				
CO1	Discover potential research areas				
CO2	Apply the knowledge gained from theoretical and practical cour	ses to	be	creati	ve,
	well-planned, organized and coordinated				
CO3	Represent data acquired in graphical and reader-friendly formats				
CO4	Derive detailed conclusions from work carried out				
CO5	Report and present the findings of the work conducted				

PROFESSIONAL ELECTIVES

SEMESTER I, PROFESSIONAL ELECTIVE I

AE2211	1 APPLICATIONS SPECIFIC INTEGRATED CIRCUITS	L	Т	P	С
		3	0	0	3
COURS	E OBJECTIVES:				
	• To prepare the student to be an entry-level industrial standard A designer.	SIC	or	FPC	δA
	• To analyze the issues and tools related to ASIC/FPGA design and imp	olem	enta	tion.	
	• To understand basics of System on Chip and Platform based design.				
UNIT I	INTRODUCTION TO ASICS, CMOS LOGIC AND ASIC LIBRAR DESIGN	Y			9
• •	ASICs - Design flow - CMOS transistors - Combinational Logic Cell - S	-			
cell -Data	path logic cell - Transistors as Resistors - Transistor Parasitic Capacitance-	<u> </u>			
UNIT II	PROGRAMMABLE ASICS, PROGRAMMABLE ASIC LOGI AND PROGRAMMABLE ASIC I/O CELLS	CO	CEL	LS	9
Anti-fuse	- static RAM - EPROM and EEPROM technology - Actel ACT - Xilinz	k LC	CA -	Alte	era
FLEX -A	ltera MAX DC & AC inputs and outputs - Clock & Power inputs - Xilinx I/	O bl	ocks		
UNIT II	PROGRAMMABLE ASIC ARCHITECTURE				9
Architect	ure and configuration of Spartan / Cyclone and Virtex / Stratix FPC	B As	— 1	Mici	: 0-
Blaze /N	ios based embedded systems – Signal probing techniques.				
UNIT IV	LOGIC SYNTHESIS, SYSTEM PARTITIONING, PLACEMENT A ROUTING	ND			9
Logic sys	nthesis - System partitioning- ASIC floor planning- placement and routing	g – j	powe	er ai	nd
Ť	strategies.				
UNIT V	HIGH PERFORMANCE ALGORITHMS FOR ASICs/ SOCs. SOC STUDIES	CA	SE		9
	nd computation of FFT and DCT. High performance filters usin	g c	lelta	-sigi	na
modulato	rs.Case Studies: Digital camera, SDRAM, High speed data standards.				
0.0110.01	TOTAL	: 45	PER	lO	DS
	E OUTCOMES:				
	d of the course, the students will be able to:				
CO1:	Recall the CMOS logics, ASIC library and programmable ASICs Explain ASIC design flow, programmable ASIC cells and architectures				
CO2: CO3:	Describe I/O cells, interconnects Tentative and high performance algorithm	a for	10		
CO3: CO4:	Demonstrate logic synthesis, system partitioning, placement and routing	5 101	AS	US	
CO4. CO5:	Investigate new developments in SOC and low power design				
REFERI					
1.	Douglas J. Smith, HDL Chip Design, Madison, AL, USA: Doone Publication	ons	1997	7	
2.	Jose E. France, Yannis Tsividis, "Design of Analog - Digital VLS				for
3.	Telecommunication Signal Processing", Prentice Hall, 1994. M.J.S.Smith, "Application - Specific Integrated Circuits", Pearson, 2014.				
4.	Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and Information	n Pr	oces	sing	",
	McGraw Hill, 1994.				
	Roger Woods, John McAllister, Dr. Ying Yi, Gaye Lightbod,	"FI	PGA	-bas	ed
5.	Implementation of Signal Processing Systems", Wiley, 2008.		011		

Course	Programme Outcomes									
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	-	2	2	1	1				
CO2	2	-	2	2	1	1				
CO3	2	-	2	2	1	1				
CO4	2	-	2	2	1	1				
CO5	2	-	2	2	1	1				
СО	2	-	2	2	1	1				

Marks		5 Cognitive Level								
IVIAI KS	Marks	Reme	mber	Under	stand	Appl	y	Analyse(An)		
Qus.	Qus.	(K	n)	(Uı	n)		-	Evaluate(Ev)		
2	1 either	2(2)-	CO1	1eithe	er or	-		-		
	or			(16)-0	CO1					
2	1 either	2(2)-	CO2	1eithe	er or	-		-		
	or			(16)-0	CO2					
2	1 either	1(2)-	CO3	1(2)-0	CO3	-		-		
	or			1eithe	er or					
2	1 either	1(2)-	CO4	1(2)-0	CO4	-		-		
	or									
				(16)-0	CO4					
2		1(2)-	CO5	1(2)-0	CO5	-		-		
	or									
					-					
				(16)-CO	05					
10	5 oith an	7/	2)	2/0)					
10		/(.	<i>∠)</i>		<i>,</i>	-		-		
	01									
20	80	1	1							
						-		-		
2070					/0	_	<u> </u>			
CO1					CO	4		CO5		
								20		
20%								20%		
	2 2 2 2 2 2 10 20 20% 20%	$\begin{array}{c cccc} 2 & 1 & \text{either} \\ \text{or} \\ \\ \hline 2 & 1 & \text{either} \\ \\ \hline 2 & 1 & 1 & \text{either} \\ \\ \hline 2 & 1 & 1 & 1 & 1 \\ \hline 2 & 1 & 1 & $	$ \begin{array}{c ccccc} 2 & 1 & \text{either} & 2(2) - \\ \text{or} & & & \\ \\ 2 & 1 & \text{either} & 2(2) - \\ \text{or} & & & \\ \\ 2 & 1 & \text{either} & 1(2) - \\ \text{or} & & & \\ \\ 2 & 1 & \text{either} & 1(2) - \\ \text{or} & & & \\ \\ 2 & 1 & \text{either} & 1(2) - \\ \text{or} & & & \\ \\ 2 & 1 & \text{either} & 1(2) - \\ \text{or} & & & \\ \\ 2 & 1 & \text{either} & 1(2) - \\ \text{or} & & & \\ \\ 2 & 1 & \text{either} & 1(2) - \\ \text{or} & & & \\ \\ 2 & 1 & \text{either} & 1(2) - \\ \text{or} & & & \\ \\ 2 & 1 & \text{either} & 1(2) - \\ \text{or} & & & \\ \\ 2 & 1 & \text{either} & 1(2) - \\ \text{or} & & & \\ \\ 2 & 0 & & \\ \\ \hline 2 & 1 & \text{either} & 1(2) - \\ \text{or} & & & \\ \\ \hline 2 & 1 & \text{either} & 1(2) - \\ \text{or} & & \\ \\ \hline 2 & 0 & & \\ \\ \hline 2 & 0 & & \\ \hline \end{array} $	$ \begin{array}{c cccc} 2 & 1 & \text{either} \\ \text{or} \\ \\ \end{array} & 2 \\ 2 & 1 & \text{either} \\ \text{or} \\ \\ \end{array} & 2 \\ 2 \\ 1 & \text{either} \\ \text{or} \\ \\ \end{array} & 1(2) - CO2 \\ \\ \end{array} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

AE22112	2 ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY	L	Т	Р	С
		3	0	0	3
COURSE	E OBJECTIVES:				
	To gain broad conceptual understanding of the various aspects of (EM)interference and compatibility	elect	rom	agne	etic
٠	To develop a theoretical understanding of electromagnetic shielding effective	vene	SS		
٠	To understand ways of mitigating EMI by using shielding, grounding and fi	ilteri	ng		
	To understand the need for standards and to appreciate measurement metho		<u> </u>		
	To understand how EMI impacts wireless and broadband technologies				
UNIT I	INTRODUCTION & SOURCES OF EM INTERFERENCE				9
	on - Classification of sources - Natural sources - Man-made sources -	- Su	vev	of	-
	gnetic environment.		, ey	01	
UNIT II	EM SHIELDING				9
	on Shielding Theory- LF Magnetic shielding, PCB level Shield	ing-	Sh	ieldi	ng
	less - Far-field sources - Near-field sources - Low-frequency, magnetic	-			-
	apertures.				
UNIT III	INTERFERENCE CONTROL TECHNIQUES				9
Equipmen	nt screening - Cable screening - grounding - Power-line filters - Isolatio	n -]	Bala	ncin	g -
	e filters - Nonlinear protective devices.				-
UNIT IV	EMC STANDARDS, MEASUREMENTS AND TESTING				9
Need for	standards - Civilian EMC standards - Military standards - The internation	nal fr	ame	worł	<i>z</i> _
					x -
Human e	xposure limits to EM fields -EMC measurement techniques - Measureme				
environm	ents. Need for standards - The international framework - Human exposure	ent t	ools	- Te	est
environm fields –EM	ents. Need for standards - The international framework - Human exposure MC measurement techniques - Measurement tools - Test environments.	ent t	ools	- Te	est M
environm fields –El UNIT V	ents. Need for standards - The international framework - Human exposure MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES	ent t re lir	ools nits	- Te to E	est M 9
environm fields –EM UNIT V Efficient	ents. Need for standards - The international framework - Human exposure MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spectrum - EMC, interoperability - EMC, interoperabi	ent t re lir	ools nits	- Te to E ns a	est M 9 nd
environm fields –EM UNIT V Efficient alliances	ents. Need for standards - The international framework - Human exposure MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spec- Transmission of high-frequency signals over telephone and power network	ent t re lir	ools nits	- Te to E ns a	est M 9 nd
environm fields –EM UNIT V Efficient alliances	ents. Need for standards - The international framework - Human exposure MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spectral Spectrum - Transmission of high-frequency signals over telephone and power network poscriber lines - EMC and power line telecommunications.	ent t re lir ecific ks —	ools nits catio - EN	- To to E ns a IC a	est M 9 nd nd
environm fields –EM UNIT V Efficient alliances digital sul	ents. Need for standards - The international framework - Human exposure MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spectra - Transmission of high-frequency signals over telephone and power networ pscriber lines - EMC and power line telecommunications.	ent t re lir ecific ks —	ools nits catio - EN	- To to E ns a IC a	est M 9 nd nd
environm fields –EM UNIT V Efficient alliances digital sul	ents. Need for standards - The international framework - Human exposure MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spectral Spectrum - Transmission of high-frequency signals over telephone and power network poscriber lines - EMC and power line telecommunications.	ent t re lir ecific ks —	ools nits catio - EN	- To to E ns a IC a	est M 9 nd nd
environm fields –EM UNIT V Efficient alliances digital sul SUGGES • Inve	ents. Need for standards - The international framework - Human exposure MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spectra frequency signals over telephone and power networ - Transmission of high-frequency signals over telephone and power networ - Scriber lines - EMC and power line telecommunications. - TOTAL STED ACTIVITIES: - estigate various case studies related to EMIC. Example: Chernobyl Disaster	ent t re lir ecific ks – 2: 45	ools nits catio - EN PEI 986.	- Te to E ns a IC a RIO	est M 9 nd nd DS
environm fields –EM UNIT V Efficient alliances digital sul SUGGES • Inve • Dev	ents. Need for standards - The international framework - Human exposure MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spectra - Transmission of high-frequency signals over telephone and power network oscriber lines - EMC and power line telecommunications. TOTAL STED ACTIVITIES: estigate various case studies related to EMIC. Example: Chernobyl Disaster elop some understanding about the design of EM shields in electronic systems	ent t re lir ecific ks – 2: 45	ools nits catio - EN PEI 986.	- Te to E ns a IC a RIO	est M 9 nd DS
environm fields –EM UNIT V Efficient alliances digital sul SUGGES • Inve • Dev pach	ents. Need for standards - The international framework - Human exposure MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spec- Transmission of high-frequency signals over telephone and power network oscriber lines - EMC and power line telecommunications. TOTAL TED ACTIVITIES: estigate various case studies related to EMIC. Example: Chernobyl Disaster elop some understanding about the design of EM shields in electronic syst (aging.	ent t re lir ecific ks – 2: 45	ools nits catio - EN PEI 986.	- Te to E ns a IC a RIO	est M 9 nd nd DS
environm fields –EM UNIT V Efficient alliances - digital sul SUGGES • Inve • Dev pach COURSH	ents. Need for standards - The international framework - Human exposure MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spectra - Transmission of high-frequency signals over telephone and power network - Transmission of high-frequency signals over telephone and power network - Transmission of high-frequency signals over telephone and power network - Transmission of high-frequency signals over telephone and power network - Transmission of high-frequency signals over telephone and power network - Transmission of high-frequency signals over telephone and power network - TOTAL - TOTAL - STED ACTIVITIES: - estigate various case studies related to EMIC. Example: Chernobyl Disaster - elop some understanding about the design of EM shields in electronic system - court - Comes: - COUTCOMES:	ent t re lir ecific ks – 2: 45	ools nits catio - EN PEI 986.	- Te to E ns a IC a RIO	est M 9 nd DS
environm fields –EM UNIT V Efficient alliances digital sul SUGGES • Inve • Dev pach COURSI At the en	ents. Need for standards - The international framework - Human exposure MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spectra - Transmission of high-frequency signals over telephone and power network oscriber lines - EMC and power line telecommunications. TOTAL TED ACTIVITIES: estigate various case studies related to EMIC. Example: Chernobyl Disaster elop some understanding about the design of EM shields in electronic system taging. E OUTCOMES: d of the course, the students will be able to:	ent t re lir ecific ks – 2: 45	ools nits catio - EN PEI 986.	- Te to E ns a IC a RIO	est M 9 nd DS
environm fields –EM UNIT V Efficient alliances digital sul SUGGES • Inve • Dev pach COURSH At the en CO1:	ents. Need for standards - The international framework - Human exposure MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spec- Transmission of high-frequency signals over telephone and power networ oscriber lines - EMC and power line telecommunications. TOTAL STED ACTIVITIES: estigate various case studies related to EMIC. Example: Chernobyl Disaster elop some understanding about the design of EM shields in electronic sys caging. COUTCOMES: d of the course, the students will be able to: Demonstrate knowledge of the various sources of electromagnetic interfere	ent t re lin ecific ks – 2: 45 2: 45 5: in 1 stem	ools nits - EM PEI 986. desi	- Te to E ns a IC a RIO	est M 9 nd nd DS
environm fields –EM UNIT V Efficient alliances digital sul SUGGES • Inve • Dev pach COURSH At the en CO1:	ents. Need for standards - The international framework - Human exposur MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spec- Transmission of high-frequency signals over telephone and power networ oscriber lines - EMC and power line telecommunications. TOTAL STED ACTIVITIES: estigate various case studies related to EMIC. Example: Chernobyl Disaster elop some understanding about the design of EM shields in electronic sys caging. C OUTCOMES: d of the course, the students will be able to: Demonstrate knowledge of the various sources of electromagnetic interfere Display an understanding of the effect of how electromagnetic fields	ent t re lin ecific ks – 2: 45 2: 45 5: in 1 stem	ools nits - EM PEI 986. desi	- Te to E ns a IC a RIO	est M 9 nd nd DS
environm fields –EM UNIT V Efficient alliances digital sul SUGGES • Inve • Dev pach COURSH At the en CO1: CO2:	ents. Need for standards - The international framework - Human exposur MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spec- Transmission of high-frequency signals over telephone and power networ oscriber lines - EMC and power line telecommunications. TOTAL TED ACTIVITIES: estigate various case studies related to EMIC. Example: Chernobyl Disaster elop some understanding about the design of EM shields in electronic sys (aging. C OUTCOMES: d of the course, the students will be able to: Demonstrate knowledge of the various sources of electromagnetic interfere Display an understanding of the effect of how electromagnetic fields apertures, and solve simple problems based on that understanding	ent t re lin ecific ks – 2: 45 2: 45 5: in 1 stem	ools nits - EM PEI 986. desi	- Te to E ns a IC a RIO	est M 9 nd nd DS
environm fields –EM UNIT V Efficient alliances digital sul SUGGES • Inve • Dev pach COURSE At the en CO1: CO2: CO3:	ents. Need for standards - The international framework - Human exposur MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spe- Transmission of high-frequency signals over telephone and power networ bscriber lines - EMC and power line telecommunications. TOTAL STED ACTIVITIES: estigate various case studies related to EMIC. Example: Chernobyl Disaster elop some understanding about the design of EM shields in electronic sys caging. Demonstrate knowledge of the various sources of electromagnetic interfere Display an understanding of the effect of how electromagnetic fields apertures, and solve simple problems based on that understanding Explain the EMI mitigation techniques of shielding and grounding	ent t re lin ecific ks – 2: 45 2: 45 5: in 1 stem	ools nits - EM PEI 986. desi	- Te to E ns a IC a RIO	est M 9 nd nd DS
environm fields –EM UNIT V Efficient alliances digital sul SUGGES • Inve • Dev pach COURSH At the en CO1: CO2: CO3: CO4:	ents. Need for standards - The international framework - Human exposur MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spectransmission of high-frequency signals over telephone and power networ bscriber lines - EMC and power line telecommunications. TOTAL STED ACTIVITIES: estigate various case studies related to EMIC. Example: Chernobyl Disaster elop some understanding about the design of EM shields in electronic system caging. COUTCOMES: d of the course, the students will be able to: Demonstrate knowledge of the various sources of electromagnetic interfere Display an understanding of the effect of how electromagnetic fields apertures, and solve simple problems based on that understanding Explain the EMI mitigation techniques of shielding and grounding Explain the need for standards and EMC measurement methods	ent t re lin ecific ks – 2: 45 2: 45 5: in 1 stem	ools nits - EM PEI 986. desi	- Te to E ns a IC a RIO	est M 9 nd nd DS
environm fields –EM UNIT V Efficient alliances digital sul SUGGES • Inve • Dev pach COURSH At the en CO1: CO2: CO3: CO3: CO4: CO5:	ents. Need for standards - The international framework - Human exposur MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spectransmission of high-frequency signals over telephone and power networ bescriber lines - EMC and power line telecommunications. TOTAL TED ACTIVITIES: estigate various case studies related to EMIC. Example: Chernobyl Disaster elop some understanding about the design of EM shields in electronic syster caging. COUTCOMES: d of the course, the students will be able to: Demonstrate knowledge of the various sources of electromagnetic interfered Display an understanding of the effect of how electromagnetic fields apertures, and solve simple problems based on that understanding Explain the EMI mitigation techniques of shielding and grounding Explain the need for standards and EMC measurement methods Discuss the impact of EMC on wireless and broadband technologies	ent t re lin ecific ks – 2: 45 2: 45 5: in 1 stem	ools nits - EM PEI 986. desi	- Te to E ns a IC a RIO	est M 9 nd nd DS nd
environm fields –EN UNIT V Efficient alliances digital sul SUGGES • Invo • Dev pach COURSH At the en CO1: CO2: CO3: CO3: CO4: CO5: REFERE	ents. Need for standards - The international framework - Human exposur MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spectransmission of high-frequency signals over telephone and power networ becriber lines - EMC and power line telecommunications. TOTAL STED ACTIVITIES: estigate various case studies related to EMIC. Example: Chernobyl Disaster elop some understanding about the design of EM shields in electronic syst caging. Demonstrate knowledge of the various sources of electromagnetic interfere Display an understanding of the effect of how electromagnetic fields apertures, and solve simple problems based on that understanding Explain the EMI mitigation techniques of shielding and grounding Explain the EMI mitigation techniques of shielding and grounding Explain the need for standards and EMC measurement methods Discuss the impact of EMC on wireless and broadband technologies ENCES:	ent t re lir ecific ks – 2: 45 2: 45 2: 45 2: 45 2: 45 2: 00 2: 00	ools nits catio - EN PEI 986. desi ble t	- Te to E ns a IC a RIO gn a hrou	est M M 9 nd DS nd nd
environm fields –EM UNIT V Efficient alliances digital sul SUGGES • Invo • Dev pach COURSH At the en CO1: CO2: CO3: CO3: CO4: CO5:	ents. Need for standards - The international framework - Human exposur MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spec- Transmission of high-frequency signals over telephone and power networ oscriber lines - EMC and power line telecommunications. TOTAL STED ACTIVITIES: estigate various case studies related to EMIC. Example: Chernobyl Disaster elop some understanding about the design of EM shields in electronic sys (aging. COUTCOMES: d of the course, the students will be able to: Demonstrate knowledge of the various sources of electromagnetic fields apertures, and solve simple problems based on that understanding Explain the EMI mitigation techniques of shielding and grounding Explain the need for standards and EMC measurement methods Discuss the impact of EMC on wireless and broadband technologies ENCES: Christopoulos C, Principles and Techniques of Electromagnetic Com Press,Second Edition, Indian Edition, 2013.	ent t re lir ecific ks – 2: 45 2: 45 2: 45 2: 45 2: 45 2: 00 2: 00	ools nits catio - EM PEI 986. desi ble t	- Te to E ns a IC a gn a gn a hrou	est M M 9 nd nd DS nd nd
environm fields –EN UNIT V Efficient alliances digital sul SUGGES • Invo • Dev pach COURSH At the en CO1: CO2: CO3: CO3: CO4: CO5: REFERE	ents. Need for standards - The international framework - Human exposur MC measurement techniques - Measurement tools - Test environments. EMC CONSIDERATIONS IN WIRELESS AND BROAD BAND TECHNOLOGIES use of frequency spectrum - EMC, interoperability and coexistence - Spe- Transmission of high-frequency signals over telephone and power networ bscriber lines - EMC and power line telecommunications. TOTAL TED ACTIVITIES: estigate various case studies related to EMIC. Example: Chernobyl Disaster elop some understanding about the design of EM shields in electronic sys taging. DUTCOMES: d of the course, the students will be able to: Demonstrate knowledge of the various sources of electromagnetic interfere Display an understanding of the effect of how electromagnetic fields apertures, and solve simple problems based on that understanding Explain the EMI mitigation techniques of shielding and grounding Explain the need for standards and EMC measurement methods Discuss the impact of EMC on wireless and broadband technologies INCES: Christopoulos C, Principles and Techniques of Electromagnetic Com	ent t re lir ecific ks – 2: 45 2: 45 2: 45 2: 45 2: 45 2: 00 2: 00	ools nits catio - EM PEI 986. desi ble t	- Te to E ns a IC a gn a gn a hrou	est M M 9 nd nd DS nd nd

	2010.
4.	Henry W Ott, Electromagnetic Compatibility Engineering, John Wiley & Sons
	Inc, Newyork, 2009.
5.	Scott Bennett W, Control and Measurement of Unintentional Electromagnetic Radiation,
	John Wiley& Sons Inc., Wiley Interscience Series, 1997.

Course	Programme Outcomes									
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	2	2	1	1	2				
CO2	2	2	2	1	1	2				
CO3	2	2	2	1	1	2				
CO4	2	2	2	1	1	2				
CO5	2	2	2	1	1	2				
СО	2	2	2	1	1	2				

Unit No. and	Total 2	Tot	al 16			Co	ognitiv	ve Level		
Title	Marks	Μ	arks	Remei	mber	Understa	and	Apply	/	Analyse(An)
	Qns.	Q	ons.	(K1	1)	(Un)		(Ap)		Evaluate(Ev)
Unit-I:	2	1eit	her or	2(2)-0	CO1	1either	or	-		_
Introduction &						(16)-CO	D1			
Sources of EM										
Interference										
Unit-II:	2	1eit	her or	2(2)-0	CO2	1either	or	-		-
EM Shielding						(16)-CO	D2			
Unit-III:	2	1eit	her or	1(2)-0	CO3	1(2)-CC	03	-		-
Interference										
Control						1either				
Techniques						(16)-CO	03			
Unit-IV: EMC	2	1eit	her or	1(2)-0	CO4	1(2)-CC	D4	-		-
Standards,										
Measurements						1either				
and Testing						(16)-CO	D4			
Unit-V: EMC	2	1eit	her or	1(2)-0	CO5	1(2)-CO)5	-		-
Considerations										
in Wireless and						1either				
Broadband						(16)-CO)5			
Technologies										
Total Qns.	10	5eit	her or	7(2	2)	3(2)		-		-
						5 either	or			
						(16)				
Total Marks	20		80	14	ł	86		-		-
Weightage	20%	8	0%	149		54%		-		-
				Weighta						
	CO		C	02	(CO3	C	204		CO5
Total Marks	20		2	0		20		20		20
Weightage	20%)	20	%	4	20%	2	0%		20%

AE22113	ANALOG AND MIXED SIGNAL IC DESIGN	L	T	P	C
		3	0	0	3
COURSE (DBJECTIVES:				
•	To study the concepts of MOS large signal model and small signal model				
٠	To provide in-depth understanding of the analog integrated circuit and bu	ildin	g blo	ocks	
٠	To learn the Analog and Digital layout design for mixed signal circuits				
•	To understand the methodologies for analysis and design of funda	men	tal (CMC)S
	Analog ardMixed signal Circuits like Data Converters and filters.				
٠	To study the integrated circuits like oscillators and PLLs.				1
UNIT I	INTRODUCTION AND BASIC MOS DEVICES				9
0		truct			
	cs- large signal model – small signal model- single stage Amplifier-So	ource	foll	owe	r-
	ate stage – Cascade Stage				1
UNIT II	SUB-MICRON CIRCUIT DESIGN				9
	CMOS process flow, Capacitors and resistors, Current mirrors, The MC		ET S	wite	ch,
	cuit Design: Biasing, Op-Amp Design, Circuit Noise - OP Amp parameter	S			1
UNIT III	DATA CONVERTERS				9
	ics of Sample and Hold- Digital to Analog Converters- architecture-D				
	tegral Non linearity- Voltage Scaling-Cyclic DAC-Pipeline DAC-An				
	architecture - Flash ADC-Pipeline ADC-Differential Non linearity				
-	verview of SNR of Data Converters- Clock Jitters- Improving using		-	-	
	Filters for ADC- Band pass and High Pass Sinc Filters- Interpolating F		's foi	:DA	
UNIT IV	ANALOG AND DIGITAL LAYOUT DESIGN FOR MIXED SIGNA				9
	oduction: Introduction, , symbolic diagram. Digital layout design: Intro				
	sistor layout, PMOS and NMOS transistor layout, CMOS transistor layout				
	yout techniques and Passive component layout - capacitor, resistor and				
	analog and digital components, power supply and ground pin iss	sues,	ma	tchir	ıg,
	terconnection issues				•
UNIT V	OSCILLATORS AND PLL	<u> </u>	•		9
	ntrolled Oscillators. Simple PLL, Charge pumps PLLs, Non ideal et				
•	ked Loops frequency multiplication and synthesis. Introduction to R	IF I		esig	n,
building blo	ocks, applications	. 45	DED	INT	
SUGGEST	TOTAL	: 45	PER		12
	ED ACTIVITIES:				
	100Cs Reference : https://nptel.ac.in/courses/117/101/117101105/				
	DUTCOMES:				
	of the course, the students will be able to:				
	Demonstrate the development in the area of analog and mixed signal IC de	<u> </u>			
	Enumerate the MOS fundamentals, small signal models and analysis of M	AOS	FET	bas	ed
Cl	rcuits				
	Aodel data converter architectures				
	urvey different mixed signal circuits for various applications as	per	the	e us	ser
sp	pecifications				
	Examine and design mixed signal circuits such as Comparator, ADCs, DA	Cs, I	PLL		
REFEREN					
1. P	Allen and D. Holberg, "CMOS Analog Circuit Design", Oxford Un	niver	sity	Pres	ss,
S	econd Edition, 2012.				
S	econd Edition, 2012. . Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill,	Seco	ond H	Editi	on

3.	R.Jacob Baker, H.W.Li, and D.E. Boyce CMOS Circuit Design , Layout and Simulation,
	Prentice-Hall of India, Third Edition 2010.
4.	Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, "Analysis and Design of
	Analog Integrated Circuits", Wiley Publishers, Fifth Edition, 2009.
5.	Behzad Razavi" Design of CMOS Phase -Locked Loops: from circuit level to
	architecture level" Cambridge University Press, 2020

.

Course	Programme Outcomes									
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6				
C01	2	1	2	2	2	2				
CO2	2	1	2	2	2	2				
CO3	2	1	2	2	2	2				
CO4	2	1	2	2	2	2				
CO5	2	1	2	2	2	2				
СО	2	1	2	2	2	2				

Unit No. and	Total 2	Tota	l 16			Cogr	nitive Level	
Title	Marks	Mai	rks	Remem	ber	Understand	Apply	Analyse(An)
	Qus.	Qu	lS.	(Kn)		(Un)	(Ap)	Evaluate(Ev)
Unit I	2	1eithe	er or	2(2)-C	D1	1either or		-
Introduction						(16)-CO1	-	
and Basic								
MOS Devices								
Unit II	2	1eithe	er or	1(2)-C	D2	1(2)-CO2	1either	-
Submicron							or (16)-	
Circuit Design							CO2	
Unit III Data	2	1eithe	er or	1(2)-C	D3	1(2)-CO3		-
Converters						leither or		
						(16)-CO3		
Unit IV	2	1eithe	er or	1(2)-C	D4	1(2)-CO4	1either	-
Analog and							or	
Digital Layout							(16)-	
Design or							CO4	
Mixed Signal								
Unit V	2	1eithe	er or	1(2)-C0	D5	1(2)-CO5	-	-
Oscillators and						1either or		
PLL						(16)-CO5		
Total Title:	10	5eithe	er or	6(2)		4(2)	2 either	-
Analog And						3 either or	or	
Mixed Signal						(16)	(16)	
IC Design								
Total Marks	20	80)	12		56	32	-
Weightage	20%	80	%	12%		56%	32%	-
				Weighta	ige fo	or COs		
	CC)1	(CO2		CO3	CO4	CO5
Total Marks	20)		20		20	20	20

Weightage 20% 20% 20% 20%						
	Weightage	20%	20%	20%	20%	20%

AE22114	VLSI TESTING	L	Т	Р	C
		3	0	0	3
COURSE	C OBJECTIVES:				
•	To introduce the VLSI testing				
•	To introduce logic and fault simulation and testability measures				
•	To study the test generation for combinational and sequential circuits				
•	To study the design for testability				
•	To study the fault diagnosis				
UNIT I	INTRODUCTION TO TESTING		I T		9
	ion – VLSI Testing Process and Test Equipment – Challenges in				g -
	omics and Product Quality – Fault Modeling – Relationship Among Fa		lode	IS.	0
UNIT II	LOGIC & FAULT SIMULATION & TESTABILITY MEASURE		Circo	1-4	9
	n for Design Verification and Test Evaluation – Modeling Circuits				lon
UNIT III	ms for True Value and Fault Simulation – Scoap Controllability and Ob TEST GENERATION FOR COMBINATIONAL AND SEQUE			ly	<u> </u>
	CIRCUITS		IAL		9
Algorithr	ns and Representations – Redundancy Identification – Combi	natic	nal	ΔΤ	PG
-	ns – Sequential ATPG Algorithms – Simulation Based ATPG – Ge				
Based A		neur	/ 112	50110	
UNIT IV					9
	pr Testability Basics – Testability Analysis - Scan Cell Designs – Sca	n Ar	chite	ctur	-
	elf-Test – Random Logic Bist – DFT for Other Test Objectives, Memo				
UNIT V	FAULT DIAGNOSIS				9
Introduct	on and Basic Definitions – Fault Models for Diagnosis – Generation	of V	ecto	rs fo	r
Diagnosi	s – Combinational Logic Diagnosis - Scan Chain Diagnosis – Logic BI	ST I	Diagr	nosis	1
	ΤΟΤΑ	L :45	PE	RIO	DS
	COUTCOMES:				
	d of the course, the students will be able to:				
CO1:	Explain the basics of VLSI Testing Process and fault diagnosis				
	Describe the concept of design for testability and fault simulation				
	Perform analysis on design for testability and Fault Diagnosis				
	Examine the Test generation for Combinational and Sequential Circuits				
CO5:	Analyze Logic and Fault Simulation				
REFERE					
	ing-Terng Wang, Cheng-Wen Wu and Xiaoqing Wen, "VLSI Test	Pri	ncipl	es a	and
	chitectures", Elsevier, 2017		6	<u></u>	. 1
	chael L. Bushnell and Vishwani D. Agrawal, "Essentials of Electronic Te	-	g for	D1g1	tal,
	mory & Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 201			- D.	
	aj K. Jha and Sandeep Gupta, "Testing of Digital Systems", Cambridge	Univ	ersit	y Pre	ess,
201 4 N					
	Jha& S.D. Gupta, "Testing of Digital Systems", Cambridge, 2003.	1. 11.		1	
	W. Wen, "VLSI Test Principles and Architectures Design for Testa afmann Publishers. 2006.	abilit	у́, 1	viorg	gan
	K. Lala," Digital circuit Testing and Testability", Academic Press. 1997.				
	Abramovici, M. A. Breuer, & A.D. Friedman, "Digital System Testi	na	nd T	Pecto	hle
	sign", Computer Science Press, 1990.	ng a	nu I	csia	Ule
DC	ngn , computer berenet 1 (66, 1770.				

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	1	2	1	-			
CO2	1	-	1	2	-	-			
CO3	1	-	1	2	1	-			
CO4	1	-	1	2	-	-			
CO5	1	-	1	2	1	-			
СО	1	-	1	2	1	-			

 Table of Specification for End Semester Question Paper

20%

Weightage

Unit No. and Title	Total 2	Total 16		С	ognitiv	ve Level	
	Marks	Marks	Remember	Under	stand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Ui	n)	(Ap)	Evaluate(Ev)
Unit-I:	2	1 either	2(2)-CO1	1eithe	er or	-	-
INTRODUCTION		or		(16)-0	CO1		
TO TESTING							
Unit-II: LOGIC	& 2	1either	2(2)-CO2	1eithe	er or	-	-
FAULT		or		(16)-0	CO2		
SIMULATION	&						
TESTABILITY							
MEASURES							
Unit-III:TEST	2	1 either	1(2)-CO3	1(2)-0	CO3	-	-
GENERATION FC	R	or					
COMBINATIONA	Ĺ			1eithe	er or		
AND SEQUENTIA	L			(16)-0	CO3		
CIRCUITS							
Unit-IV:. DESIG		1 either	1(2)-CO3	1(2)-0	CO3		-
FOR TESTABILIT	Y	or		1eithe	er or		
				(16)-0	CO4		
Unit-V:FAULT	2	1either	1(2)-CO3	1(2)-0	CO5	1either o	r –
DIAGNOSIS		or				(16)-CO	5
Total Qns. Tit	e: 10	5either	7(2)	3(2	2)	1 either	-
AE22114 VLS	I I	or		4 eith	er or	or	
TESTING				(16	5)	(16)	
Total Marks	20	80	14	70)	16	-
Weightage	20%	80%	14%	709	%	16%	-
·			ghtage for CO				
	CO1	CO2	CO3	3	CC		CO5
Total Marks	20	20	20		20)	20

AE22115	SOFT COMPUTING AND OPTIMIZATION TECHNIQUES	L	Τ	Р	C					
COURSE OBJECTIVES:										
•	To classify various soft computing frame works									
•	 To be familiar with the design of neural networks, fuzzy logic, and fuzzy systems 									

20%

20%

20%

20%

UNIT I		
UNIT I		
UNIT I		
	FUZZY LOGIC	9
Introduct		-
	tion to Fuzzy logic - Fuzzy sets and membership functions- Operations on Fuzzy sets	
•	lations, rules, propositions, implications, and inferences- Defuzzification techniques- Fu	izzy
	A DETUNICIAL NETWODES	9
UNIT II		-
	ed Learning: Introduction and how brain works, Neuron as a simple computing elementer part and a simple computing and a simple computing the second s	
	eptron, Back propagation networks: architecture, multilayer perceptron, back propagat	
	input layer, accelerated learning in multilayer perceptron, The Hopfield netwo	
	onal associative memories (BAM), RBF Neural Network. Unsupervised Learning Learning, Generalized Hebbian learning algorithm, Competitive learning, S	elf-
	ng Computational Maps: Kohonen Network	CII-
		9
	algorithm- Introduction - biological background - Genetic basic concepts - opera	-
	ding scheme – Fitness evaluation – crossover - mutation - Travelling Sales	
	, Particle swam optimization, Ant colony optimization	mall
UNIT IV		9
	e Neuro-Fuzzy Inference Systems (ANFIS) – architecture - Coactive Neuro-Fu	-
	g, framework, neuron functions for adaptive networks – Data Clustering Algorithn	
	e Structure Identification –Neuro-Fuzzy Control – the inverted pendulum system	15
UNIT V		9
	e gradient, Newton's Method, Marquardt Method, Constrained optimization –sequer ogramming, Interior penalty function method, external penalty function method	
	TOTAL:45 PERIC	DDS
COURS	E OUTCOMES:	DDS
		DDS
	E OUTCOMES:	
At the en	E OUTCOMES: nd of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA	
At the en CO1:	E OUTCOMES: nd of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network	
At the en CO1: CO2:	E OUTCOMES: nd of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system.	
At the en CO1: CO2: CO3:	E OUTCOMES: nd of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system. Solve machine learning problems through Neural networks.	
At the en CO1: CO2: CO3: CO4:	E OUTCOMES: nd of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system. Solve machine learning problems through Neural networks. Examine Neuro-Fuzzy system for clustering and classification. Design optimization techniques to solve the real world problems.	
At the en CO1: CO2: CO3: CO4: CO5:	E OUTCOMES: nd of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system. Solve machine learning problems through Neural networks. Examine Neuro-Fuzzy system for clustering and classification. Design optimization techniques to solve the real world problems.	and
At the en CO1: CO2: CO3: CO4: CO5: REFERI	E OUTCOMES: nd of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system. Solve machine learning problems through Neural networks. Examine Neuro- Fuzzy system for clustering and classification. Design optimization techniques to solve the real world problems. ENCES: J.S.R.Jang, C.T. Sun and E.Mizutani, Neuro-Fuzzy and Soft Computing, PHI / Pear Education 2004.	and
At the en CO1: CO2: CO3: CO4: CO5: REFERI	E OUTCOMES: ad of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system. Solve machine learning problems through Neural networks. Examine Neuro- Fuzzy system for clustering and classification. Design optimization techniques to solve the real world problems. ENCES: J.S.R.Jang, C.T. Sun and E.Mizutani, Neuro-Fuzzy and Soft Computing, PHI / Pear Education 2004. Timothy J. Ross," Fuzzy Sets and Fuzzy Logic with Engineering Applications",4 th	and
At the en CO1: CO2: CO3: CO4: CO5: REFERI 1. 2.	E OUTCOMES: ad of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system. Solve machine learning problems through Neural networks. Examine Neuro- Fuzzy system for clustering and classification. Design optimization techniques to solve the real world problems. ENCES: J.S.R.Jang, C.T. Sun and E.Mizutani, Neuro-Fuzzy and Soft Computing, PHI / Pear Education 2004. Timothy J. Ross," Fuzzy Sets and Fuzzy Logic with Engineering Applications",4 th Edition, An Indian Adaptation,2021.	and
At the en CO1: CO2: CO3: CO4: CO5: REFERI 1.	 E OUTCOMES: and of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system. Solve machine learning problems through Neural networks. Examine Neuro- Fuzzy system for clustering and classification. Design optimization techniques to solve the real world problems. ENCES: J.S.R.Jang, C.T. Sun and E.Mizutani, Neuro-Fuzzy and Soft Computing, PHI / Pear Education 2004. Timothy J. Ross," Fuzzy Sets and Fuzzy Logic with Engineering Applications",4th Edition, An Indian Adaptation,2021. Jang , Sun and Mizutani," Neuro-Fuzzy And Soft Computing: A Computation 	and
At the en CO1: CO2: CO3: CO4: CO5: REFERI 1. 2. 3.	 E OUTCOMES: and of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system. Solve machine learning problems through Neural networks. Examine Neuro- Fuzzy system for clustering and classification. Design optimization techniques to solve the real world problems. ENCES: J.S.R.Jang, C.T. Sun and E.Mizutani, Neuro-Fuzzy and Soft Computing, PHI / Pear Education 2004. Timothy J. Ross," Fuzzy Sets and Fuzzy Logic with Engineering Applications",4th Edition, An Indian Adaptation,2021. Jang , Sun and Mizutani," Neuro-Fuzzy And Soft Computing: A Computation Approach To Learning And Machine Intelligence", 1st Edition, Pearson India,2015. 	and
At the en CO1: CO2: CO3: CO4: CO5: REFERI 1. 2. 3. 4.	E OUTCOMES: and of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system. Solve machine learning problems through Neural networks. Examine Neuro- Fuzzy system for clustering and classification. Design optimization techniques to solve the real world problems. ENCES: J.S.R.Jang, C.T. Sun and E.Mizutani, Neuro-Fuzzy and Soft Computing, PHI / Pear Education 2004. Timothy J. Ross," Fuzzy Sets and Fuzzy Logic with Engineering Applications",4 th Edition, An Indian Adaptation,2021. Jang , Sun and Mizutani," Neuro-Fuzzy And Soft Computing: A Computation Approach To Learning And Machine Intelligence", 1 st Edition, Pearson India,2015. Daniel Graupe," Principles Of Artificial Neural Networks: Basic Designs to D Learning",4 th Edition, World Scientific, 2020.	and rson onal Deep
At the en CO1: CO2: CO3: CO4: CO5: REFERI 1. 2. 3.	 E OUTCOMES: and of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system. Solve machine learning problems through Neural networks. Examine Neuro- Fuzzy system for clustering and classification. Design optimization techniques to solve the real world problems. ENCES: J.S.R.Jang, C.T. Sun and E.Mizutani, Neuro-Fuzzy and Soft Computing, PHI / Pear Education 2004. Timothy J. Ross," Fuzzy Sets and Fuzzy Logic with Engineering Applications",4th Edition, An Indian Adaptation,2021. Jang , Sun and Mizutani," Neuro-Fuzzy And Soft Computing: A Computation Approach To Learning And Machine Intelligence", 1st Edition, Pearson India,2015. Daniel Graupe," Principles Of Artificial Neural Networks: Basic Designs to D Learning",4th Edition, World Scientific, 2020. David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning 	and rson onal Deep
At the en CO1: CO2: CO3: CO4: CO5: REFERI 1. 2. 3. 4.	E OUTCOMES: nd of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system. Solve machine learning problems through Neural networks. Examine Neuro- Fuzzy system for clustering and classification. Design optimization techniques to solve the real world problems. ENCES: J.S.R.Jang, C.T. Sun and E.Mizutani, Neuro-Fuzzy and Soft Computing, PHI / Peat Education 2004. Timothy J. Ross," Fuzzy Sets and Fuzzy Logic with Engineering Applications",4 th Edition, An Indian Adaptation,2021. Jang , Sun and Mizutani," Neuro-Fuzzy And Soft Computing: A Computation Approach To Learning And Machine Intelligence", 1 st Edition, Pearson India,2015. Daniel Graupe," Principles Of Artificial Neural Networks: Basic Designs to D Learning",4 th Edition, World Scientific, 2020. David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn Addisonwesley, 2009.	and rson onal Deep ing,
At the en CO1: CO2: CO3: CO4: CO5: REFERI 1. 2. 3. 4.	E OUTCOMES: and of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system. Solve machine learning problems through Neural networks. Examine Neuro-Fuzzy system for clustering and classification. Design optimization techniques to solve the real world problems. ENCES: J.S.R.Jang, C.T. Sun and E.Mizutani, Neuro-Fuzzy and Soft Computing, PHI / Pear Education 2004. Timothy J. Ross," Fuzzy Sets and Fuzzy Logic with Engineering Applications",4 th Edition, An Indian Adaptation,2021. Jang , Sun and Mizutani," Neuro-Fuzzy And Soft Computing: A Computation Approach To Learning And Machine Intelligence", 1 st Edition, Pearson India,2015. Daniel Graupe," Principles Of Artificial Neural Networks: Basic Designs to D Learning",4 th Edition, World Scientific, 2020. David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn Addisonwesley, 2009. Himanshu Singh&Yunis Ahmed Lone," Deep Neuro-Fuzzy Systems With Pytho	and rson onal Deep ing,
At the en CO1: CO2: CO3: CO4: CO5: REFERI 1. 2. 3. 4. 5.	E OUTCOMES: nd of the course, the students will be able to: Summarize the application on different soft computing techniques like Fuzzy, GA Neural network Explain Neuro-Fuzzy and Neuro-Fuzzy-GA expert system. Solve machine learning problems through Neural networks. Examine Neuro- Fuzzy system for clustering and classification. Design optimization techniques to solve the real world problems. ENCES: J.S.R.Jang, C.T. Sun and E.Mizutani, Neuro-Fuzzy and Soft Computing, PHI / Peat Education 2004. Timothy J. Ross," Fuzzy Sets and Fuzzy Logic with Engineering Applications",4 th Edition, An Indian Adaptation,2021. Jang , Sun and Mizutani," Neuro-Fuzzy And Soft Computing: A Computation Approach To Learning And Machine Intelligence", 1 st Edition, Pearson India,2015. Daniel Graupe," Principles Of Artificial Neural Networks: Basic Designs to D Learning",4 th Edition, World Scientific, 2020. David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn Addisonwesley, 2009.	and rson onal Deep ing,

8.	George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic-Theory and									
	Applications, PrenticeHall, 1995.									
9.	James A. Freeman and David M. Skapura, Neural Networks Algorithms,									
	Applications, and Programming Techniques, Pearson Edn., 2003.									
10.	Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, Neuro-Fuzzy and Soft									
	Computing, Prentice-Hall of India, 2003.									
11.	Mitchell Melanie, An Introduction to Genetic Algorithm, Prentice Hall, 1998.									

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	1	2	2	2	2			
CO2	2	1	2	2	2	2			
CO3	2	1	2	2	2	2			
CO4	2	1	2	2	2	2			
CO5	2	1	2	2	2	2			
СО	2	1	2	2	2	2			

Unit No. and	Total 2	Total 16			С	ognitiv	ve Level				
Title	Marks	Marks	Rem	ember	Unders	stand	App	ly	Analyse(An)		
	Qus.	Qus.	()	Kn)	(Ur	1)	(Ap)	Evaluate(Ev)		
Unit-I: Fuzzy	2	1either or	2(2)	-CO1	1eithe	er or	-		-		
Logic					(16)-0	CO1					
Unit-II: Artificial	2	leither or	2(2)	-CO2	1eithe	er or	-		-		
Neural Networks					(16)-0	CO2					
Unit-III: Genetic	2	1either or	1(2)	-CO3	1(2)-0	203	-		-		
Algorithm					1eithe	er or					
					(16)-0	CO3					
Unit-IV: Neuro-	2	1either or	1(2)	-CO3	1(2)-0	CO3	1either or		-		
Fuzzy Modeling							(16)-C	CO4			
Unit-V:	2	leither or	1(2)	-CO3	1(2)-0	CO5			-		
Conventional					1eithe	-					
Optimization					(16)-0	205					
Techniques											
Total Qns. Title:	10	5either or	7	(2)	3(2	,	1 eithe	-	-		
					4 eithe		(16)			
	• •				(16	,					
Total Marks	20	80		14	70 16		16		70 16		-
Weightage	20%	80%		4%	709	%	16%	6	-		
r			0	ige for C							
	CO1		02	CC	-		204	CO5			
Total Marks	20		20	2			20		20		
Weightage	20%	20)%	20	%	2	0%		20%		

SEMESTER II, PROFESSIONAL ELECTIVE II

CU22322	RF SYSTEM DESIGN	L	Τ	P	C
		3	0	0	3
COURSE (DBJECTIVES:				
•	Be familiar with RF transceiver system design for wireless communication				
•	Be exposed to design methods of receivers and transmitters used in systems	com	mun	icat	ion
•	Design RF circuits and systems using an advanced design tool.				
•	Exemplify different synchronization methods circuits and describ schematic and design criteria.	be t	heir	blo	ock
•	Measure RF circuits and systems with a spectrum analyzer				
UNIT I	BASICS OF RADIO FREQUENCY SYSTEM DESIGN				9
noise figure Elements of RMS value,	and models of Linear systems and Non-linear system. Specification pa e, SNR, Characteristic impedance, S-parameters, Impedance matching digital base band signaling: complex envelope of band pass signals, Crest factor, Sampling, jitter, modulation techniques, filters, pulse shapi selectivity, dynamic range and, adjacent and alternate channel power leak RADIO ARCHITECTURES AND DESIGN CONSIDERATION	g and Ave ng, E ages	l De rage EVM	ecibo val	els. ue,
	odyne architecture, direct conversion architecture, Low IF architec		har	nd n	-
sampling ra	dio architecture, System Design Considerations for an Analog Fronte adio Applications, Interference, Near, In-band & wide-band consideration	end I		-	
UNIT III	AMPLIFIER MODELING AND ANALYSIS				9
performance power relati circles broad curve, gain model and	se equivalent model for Radio frequency device, amplifier noise e, minimum detectable signal, performance of noisy systems in case ons, stability considerations, constant gain circles, constant VSWR cir dband, high power and multistage amplifiers. Non-Linearity: Amplifier compression, AM-AM, AM-PM, polynomial approximations, Saleh Hammerstein model, intermodulation, Single and two tone analyses, se ions and measurements, SOI and TOI points	cade. cles, r pov mod	An low ver t el,	nplit v nc rans Wie	fier fise fer ner
UNIT IV	MIXER AND OSCILLATOR MODELING AND ANALYSIS				9
Mixers: Free calculations	equency translation mechanisms, frequency inversion, image frequency, principles of mixer realizations. Oscillators: phase noise and its effurious components, frequency accuracy, oscillator realizations: Frequence APPLICATIONS OF SYSTEMS DESIGN	ects,	effe	ects	of
Multimode	and multiband Super heterodyne transceiver: selection of frequency	pla	n, r	ecei	ver
-	transmitter system design – Direct conversion transceiver: receiv	er s	yste	m a	ınd
	TOTAL	L :45	PEF	RIO	DS
	OUTCOMES:				
Upon the co	ompletion of course, students will be able to				
CO1:	Explain the specifications of transceiver modules and the principles oscillator.	s of	mix	er a	Ind
CO2:	Develop transceiver architectures and amplifier modelling.				
соз:	Apply the impact of noise in amplification modules and the resultan cascade connections	nt ef	fect	dur	ng
CO4:	Examine spurs and generation principles during signal generation translations	and	fre	quei	су
CO5:	Design the transceivers for various RF applications.				
	<u> </u>				

REFEI	RENCES:
1.	Thomas H. Lee "The Design of CMOS Radio-Frequency Integrated Circuits" . Cambridge
	University Press, 2004.
2.	Qizheng Gu, "RF System Design of Transceivers for Wireless Communications", Springer
	,2005
3.	Kevin McClaning, "Wireless Receiver Design for Digital Communications,". 2/3, Yes Dee
	Publications, 2012
4.	M C Jeruchim, P Balapan and K S Shanmugam, "Simulation of Communication
	systems:Modeling, Methodology and Techniques", Kluwer Academic/Plenum Publishers,
	2 nd Edition, 2000.
5	Mike Golio and Janet Golio, "RF and Microwave Circuits, Measurements and Modeling",
•	CRC Press, 2018.

Course		Programme Outcomes									
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	2	2	1	2	1	2					
CO2	2	2	2	2	1	2					
CO3	2	2	1	2	2	2					
CO4	2	2	2	2	2	1					
CO5	2	2	1	1	2	2					
СО	2	2	1.4	1.8	1.6	1.8					

Unit No. and Title	Total 2	Total 16		Cognitive	e Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I: BASICS OF	2	1either	2(2)-CO1	1either or	-	-
RADIO		or		(16)-CO1		
FREQUENCY						
SYSTEM DESIGN						
Unit-II: RADIO	2	1 either	2(2)-CO2	1 either or	-	-
ARCHITECTURES		or		(16)-CO2		
AND DESIGN						
CONSIDERATIONS						
Unit-III: AMPLIFIER	2	1either	1(2)-CO3	1(2)-CO3	-	-
MODELING AND		or		1either or		
ANALYSIS.				(16)-CO3		
Unit-IV: MIXER	2	1either	1(2)-CO3	1(2)-CO3	-	-
AND OSCILLATOR		or				
MODELING AND				1 either or		
ANALYSIS.				(16)-CO4		
Unit-V:	2	1either	1(2)-CO3	1(2)-CO5	1either or	-
APPLICATIONS OF		or			(16)-CO5	
SYSTEMS DESIGN.						
Total Qns. Title:	10	5either	7(2)	3(2)	1 either	-
		or		4 either or	or	
				(16)	(16)	

Total Marks	20	80	14	70	16	-
Weightage	20%	80%	14%	70%	16%	-
		Weig	ghtage for COs			
	CO1	CO2	CO3	C	04	CO5
Total Marks	20	20	20		20	20
Weightage	20%	20%	20%	20	0%	20%

AE22	211	ROBOTICS	L	Τ	P	С
			3	0	0	3
COURS	SE C	BJECTIVES:				
	•	To Introduce the concepts of Robotic systems				
	•	To understand the concepts of Instrumentation and control related to Rob	otics			
	•	To understand the kinematics and dynamics of robotics				
	•	To explore robotics in Industrial applications				
UNIT I		INTRODUCTION TO ROBOTICS				9
Robotic	s -H	story - Classification and Structure of Robotic Systems - Basic compone	nts -I	Degr	ees	of
freedom	1 - F	Robot joints coordinates- Reference frames - workspace- Robot lange	lages	- R	obo	tic
sensors-	- proz	kimity and range sensors, ultrasonic sensor, touch and slip sensor.				
UNIT I	I	ROBOT KINEMATICS AND DYNAMICS				9
Kinema	tic I	Modelling: Translation and Rotation Representation, Coordinate trans	form	ation	, C	H
		Forward and inverse kinematics, Jacobian, Dynamic Modelling: Forwa			ivei	se
dynamic	cs, E	quations of motion using Euler-Lagrange formulation, Newton Euler form	nulat	on.		
UNIT I	II	ROBOTICS CONTROL				9
		bot manipulator - state equations - constant solutions -linear feedback s				
		ntrol - PD gravity control -computed torque control, variable structu	re co	ontro	ol a	nd
impedar						
UNIT I		ROBOT INTELLIGENCE AND TASK PLANNING				9
		telligence - techniques - search problem reduction - predicate logic n				
		bblem solving -robot learning - task planning - basic problems in task pl	annii	ng -	AI	in
		Knowledge Based Expert System in robotics				
UNIT V		INDUSTRIAL ROBOTICS				9
		esign and control - cell layouts - multiple robots and machine interferen				
-		k cell control - interlocks - error detection deduction and recovery - work	c cell	con	rol	ler
- robot c	cycle	time analysis. Safety in robotics, Applications of robot and future scope				
		TOTAL	.:45 I	PER	[0]	DS
		UTCOMES:				
	end o	of the course the student will be able to				
CO1:		Explain the fundamentals of robotics				
CO2:		Illustrate the concept of kinematics and dynamics in robotics				
CO3:		Analyze the robot control techniques				
CO4:		Examine the basis of intelligence in robotics and task planning				
CO5:		Discuss the industrial applications of robotics				
REFER						
-	T 1	n J. Craig, 'Introduction to Robotics (Mechanics and Control)', Addisc	$n \overline{\mathbf{W}}$		-	
1			011 - vv	esley	, 2	nd
1	Edi	tion, 2004	011- VV	esley	7, 2	nd
	Edi Joh					

4	Richard D. Klafter, Thomas A. Chmielewski, Michael Negin, 'Robotics Engineering: An
	Integrated Approach', PHI Learning, New Delhi, 2009.
5	Yasmina Bestaoui Sebbane," Multi-UAV Planning and Task Allocation", CRC press, 2020.
6	K.S.Fu, R.C.Gonzalez and C.S.G.Lee, 'Robotics Control, Sensing, Vision and Intelligence',
	Tata McGraw Hill, 2 nd Reprint, 2008.
7	Reza N.Jazar, 'Theory of Applied Robotics Kinematics, Dynamics and Control', Springer,
	1st Indian Reprint, 2010.
8	Nicholas Odrey , Mitchell Weiss , Mikell Groover and Roger Nagel," Industrial Robotics -
	Technology ,Programming and Applications",2 nd Edition,2017.
9	
	Technology, Programming and Applications ', McGraw Hill, Int 2012.

Course	Programme Outcomes									
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	1	2	2	2	1				
CO2	2	1	2	2	2	1				
CO3	2	1	2	2	2	1				
CO4	2	1	2	2	2	1				
CO5	2	1	2	2	2	1				
СО	2	1	2	2	2	1				

Unit No. and Title	Total 2	Total 16		Cognitiv	e Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I:	2	1either	2(2)-CO1	1either or	-	-
INTRODUCTIO		or		(16)-CO1		
N TO ROBOTICS						
Unit-II: ROBOT	2	1 either	2(2)-CO2	1either or	-	-
KINEMATICS		or		(16)-CO2		
AND						
DYNAMICS						
Unit-III:	2	1 either	1(2)-CO3	1(2)-CO3	-	-
ROBOTICS		or		1either or		
CONTROL				(16)-CO3		
Unit-IV: ROBOT	2	1 either	1(2)-CO3	1(2)-CO3	1either or	-
INTELLIGENCE		or			(16)-CO4	
AND TASK						
PLANNING						
Unit-V:	2	1 either	1(2)-CO3	1(2)-CO5		-
INDUSTRIAL		or		1either or		
ROBOTICS				(16)-CO5		
Total Qns. Title:	10	5either	7(2)	3(2)	1 either or	-
		or		4 either or	(16)	
				(16)		
Total Marks	20	80	14	70	16	-

Weightage	20%	80%	14%	70%	16%	-	
Weightage for COs							
	CO1	CO2	CO	3 (CO4	CO5	
Total Marks	20	20	20)	20	20	
Weightage	20%	20%	209	% 2	20%	20%	

	COMPUTER ARCHITECTURE AND PARALLEL				
AE22212	PROCESSING	L	Т	Р	С
		3	0	0	3
COURSE OI	BJECTIVES:				
• D	iscuss the basic concepts and structure of computers.				
• E	xplain the concepts of number representation and arithmetic operations	5.			
• E	xplain different types of Memory architectures.				
	escribe various parallel processing schemes and vector architecture.				
	ummarize the Instruction execution stages and Memory hierarchy.				
UNIT I	INTRODUCTION TO COMPUTER ORGANIZATION				9
Architecture a	nd function of general computer system - Basic Operational Concepts	, Bus	s Stri	uctu	res,
	Formance – Memory locations & addresses – Memory operations –				
	quencing – addressing modes – assembly language - System b				
organization			·		
UNIT II	DATA REPRESENTATION				9
Signed numb	er representation, fixed and floating point representations, characte	r rep	rese	ntati	on.
	hmetic - integer addition and subtraction, ripple carry adder, carry loc				
	- shift-and-add, Booth multiplier, carry save multiplier - Division - n				
	niques, floating point arithmetic.			0	
UNIT III	PROCESSOR ARCHITECTURE AND CONTROL UNIT				9
	PS implementation – Building a Data path – Control Implementation	ation	Scł	nem	
	ntrol – micro programmed control - Pipelining – Pipelined data par				
	a Hazards & Control Hazards – Exceptions. Processor Architect				
	ord (VLIW) Architecture, Digital Signal Processor Architecture, S				
	eture, MIPS Processor and programming	<i>.</i>			r
UNIT IV	PARALLEL PROCESSING				9
	essing challenges – Flyn's classification – Single Instruction Sing	le D	ata	(SIS	-
	ruction Multiple Data (MIMD), Single Instruction Multiple Data				
	iple Data (SPMD), and Vector Architectures - Hardware multithread				
	d other Shared Memory Multiprocessors - Introduction to Graphics P				
	chouse Scale Computers and other Message-Passing Multiprocessors.		~~c	5	,
UNIT V	MEMORY & I/O SYSTEMS				9
	archy – memory technologies – cache memory – measuring and i	mpro	oving	л са	
	– virtual memory, Translation Lookaside Buffers – Accessing				
	rect Memory Access – Bus structure – Bus operation – Arbitration – I				
– Universal S		meen	luce	ene	ares
	ТОТА	L.•45	PE	RIU	DS
COURSE OU		L			D 0
	the course the student will be able to				
	Identify the organization of computer and different opeartions, inst	ructi	on f	orm	ats
CO1:	addressing modes and computer arithmetic	1 4011	511 1	5111	,
CO2:	Interpret the representation, manipulation of data on the computer and	nine	linin	σ	
CO2: CO3:	Explain processor architectures, multiprocessors and parallel processir			5	
005:	Explain processor architectures, multiprocessors and parallel processif	ig			

CO4:	Demonstrate the operations of computer arithmetic, the implementation schemes of processors and						
CO5:	CO5: Outline the features of multiprocessors, memory hierarchy and I/O systems						
REFER	ENCES:						
1	David A. Patterson and John L. Hennessy, "Computer Organization and Design: The						
	Hardware/Software Interface", Morgan Kaufmann / Elsevier, 5th Edition, 2014.						
2	Carl Hamacher, ZvonkoVranesic, SafwatZaky and NaraigManjikian, "Computer						
	Organizationand Embedded Systems", Tata McGraw Hill, 6th Edition, 2012.						
3	William Stallings, "Computer Organization and Architecture - Designing for						
	Performance", Pearson Education, 10th Edition, 2016.						
4	John P. Hayes, "Computer Architecture and Organization", Tata McGraw Hill, 3rd						
	Edition,2012.						
5	John L. Hennessey and David A. Patterson, "Computer Architecture - A						
	QuantitativeApproach", Morgan Kaufmann / Elsevier Publishers, 5th Edition, 2012.						

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	2	2	1	2			
CO2	2	-	2	2	1	2			
CO3	2	-	2	2	1	2			
CO4	2	-	2	2	1	2			
CO5	2	-	2	2	1	2			
СО	2	-	2	2	1	2			

Unit No. and	Total 2	Total 16		Cognitiv	/e Level	
Title	Marks	Marks	Remember (Kn)	Understand	Apply	Analyse(An)
	Qus.	Qus.		(Un)	(Ap)	Evaluate(Ev)
Unit-I:	2	leither or	2(2)-CO1	leither or	-	-
Introduction To				(16)-CO1		
Computer						
Organization						
Unit-II: Data	2	1either or	2(2)-CO2	1 either or	-	-
Representation				(16)-CO2		
Unit-III:	2	1either or	1(2)-CO3	1(2)-CO3	-	-
Processor						
Architecture				1either or		
and Control				(16)-CO3		
Unit						
Unit-IV:	2	1either or	1(2)-CO4	1(2)-CO4	-	-
Parallel				1either or		
Processing				(16)-CO4		
Unit-V:	2	leither or	1(2)-CO5	1(2)-CO5	-	-
Memory & I/O				1either or		
Systems				(16)-CO5		
Total Qns.	10	5either or	7(2)	3(2)	-	-
-				5 either or		
				(16)		
Total Marks	20	80	14	86	-	-

Weightage	20%	80%	149	%	86%	-	-						
	Weightage for COs												
	CO	1	CO2	C	03	CO4	CO5						
Total Marks	20)	20	2	20	20	20						
Weightage	209	%	20%	20)%	20%	20%						

AE22213	VLSI DESIGN TECHNIQUES	L	Τ	Р	С
		3	0	0	3
	BJECTIVES:				
	o understand the basics I-V characteristics of MOS transistor				
	o introduce the VLSI design flow				
• T	o Design combinational and sequential circuits				
• T	o introduce testing of VLSI circuits				
• T	o explore system design using Verilog HDL				
UNIT I	CMOS TECHNOLOGY				9
MOS transis	tor, Ideal I-V characteristics, C-V characteristics, non-ideal I-V e	ffects	s –	CM	C
Inverter and H	Pass transistor DC transfer characteristics - CMOS technologies, Layou	ıt des	ign I	Rule	s –
Stick Diagram	n – CMOS process enhancements– VLSI design Flow.				
UNIT II	CIRCUIT DELAY, POWER, INTERCONNECT				9
Delay estimat	tion – Logical effort and Transistor sizing – Power dissipation – Interc	onne	ct –	Desi	gn
margin –Relia	ability – Scaling – SPICE – Device models.				
UNIT III	COMBINATIONAL AND SEQUENTIAL CIRCUIT DESIGN				9
Circuit famil	ies -Circuit Pitfalls - Sequencing static circuits, Max-min delay c	onstra	aints	, Tii	me
borrowing, C	lock Skew - circuit design of latches and flip flops - synchronizer	s, M	etast	abili	ty,
communicatio	on between asynchronous clock domains.				-
UNIT IV	CMOS TESTING				9
Need for test	ing – Testers, Text fixtures and test programs – Logic verification	– Sil	icon	deb	ug
	anufacturing test – Design for testability – Boundary scan test.				U
UNIT V	SYSTEM DESIGN USING VERILOG HDL				9
Basic concep	ts- identifiers- gate primitives- gate delays- operators timing cont	rols-	pro	cedu	ral
assignments-	conditional statements- Design of combinational and sequential circ	cuits	usin	g Da	ata
	al gate level- switch level modeling and Behavioral modeling-Test ber				
Verification 7					
	ТОТА	L:45	PEF	RIOI	DS
COURSE O	UTCOMES:				
At the end of	the course the student will be able to				
CO1:	Explain the basics of CMOS technology, testing and circuit design				
000	Identify the methods to distribute clock and reduce power dissip	ation	in	CM	CC
CO2:	circuits				
CO3:	Execute the combinational and sequential circuits using Verilog HDL				
	Analyze the characteristics of CMOS transistor and the methods to	test	the	CM	OS
CO4:	circuits				
CO5:	Design combinational and sequential circuits				
REFERENC					
	ste and Harris: "CMOS VLSI DESIGN" 4th Edition, Pearson Education	n. 201	3		
	mura J.P: "Introduction to VLSI circuits and systems", Wiley 2002.	, _ 0 .	-		
	Pucknell & K.Eshraghian, "Basic VLSI Design", 3rd Edition, PHI, 200)3			
	ne Wolf, "Modern VLSI design", 4th edition Pearson Education, 2009				
	ine i on, modern i Dor design , in edition realison Education, 2007				

5	M.J.S.Smith, "Application specific integrated circuits", 1 st edition, Addison -
	Wesley Professional, 1997
6	Ciletti, "Advanced Digital Design with the Verilog HDL", 2nd edition, Pearson
	Education2010
7	Samir Palnitkar "Verilog HDL a guide to digital design and Synthesis", Prentice
	Hall, 2ndedition, 2003
8	M. Morris Mano and Michael D. Ciletti, "Digital Design with an Introduction to the
	Verilog HDL, VHDL, and System Verilog", Sixth Edition, Pearson, 2018.

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	1	2	-	-			
CO2	1	-	1	2	-	-			
CO3	1	-	1	2	2	-			
CO4	1	-	1	2	-	-			
CO5	1	-	1	2	-	-			
СО	1	-	1	2	2	-			

Unit No. and Title	Total 2	Total 16		Cognitive	Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I: CMOS	2	1either	2(2)-CO1	1either or	-	-
TECHNOLOGY		or		(16)-CO1		
Unit-II: CIRCUIT	2	1either	2(2)-CO2	1either or	-	-
DELAY, POWER,		or		(16)-CO2		
INTERCONNECT						
Unit-III:	2	1either	1(2)-CO3	1(2)-CO3	-	-
COMBINATIONAL		or				
AND SEQUENTIAL				1either or		
CIRCUIT DESIGN				(16)-CO3		
Unit-IV:. CMOS	2	1either	1(2)-CO3	1(2)-CO3		-
TESTING		or		1either or		
				(16)-CO4		
Unit-V: SYSTEM	2	1either	1(2)-CO3	1(2)-CO5	1either or	-
DESIGN USING		or			(16)-CO5	
VERILOG HDL						
Total Qns. Title:	10	5either	7(2)	3(2)	1 either or	-
AE22213:VLSI		or		4 either or	(16)	
DESIGN				(16)		
TECHNIQUES				× ,		
Total Marks	20	80	14	70	16	-
Weightage	20%	80%	14%	70%	16%	-
		W	eightage for CO	S		

	CO1	CO2	CO3	CO4	CO5
Total Marks	20	20	20	20	20
Weightage	20%	20%	20%	20%	20%

AE22	2214 INDUSTRIAL INTERNET OF THINGS	L	Т	Р	С
		3	0	0	3
COURS	SE OBJECTIVES:				
•	Fo understand the fundamentals of Internet of Things				
• '	To learn about the basics of IOT protocols				
• '	To build a small low cost embedded system using IoT				
	To apply the concept of IOT in the real world scenario				
UNIT I	INTRODUCTION AND ARCHITECTURE OF IoT				9
Introduc	ction – Definition and characteristics of IoT – Physical and Logical D	esig	n of	Io	Г-
	nication models and APIs – Challenges in IoT - Evolution of IoT- Composition				
	ed IoT Architecture – Core IoT Functional Stack.				
UNIT I	I INDUSTRIAL IoT				9
IIoT-Int	roduction, Industrial IoT: Business Model and Reference Architecture	IIo	T-B	usin	ess
Models,	Industrial IoT- Layers: IIoT Sensing, IIoT Processing, IIoT Comm	unic	atior	, II	оТ
Networl	king				
UNIT I					9
Big Dat	a Analytics and Software Defined Networks, Machine Learning and Dat	a Sci	ience	e, Ju	ılia
Program	nming, Data Management with Hadoop				
UNIT I					9
	al IoT: Security and Fog Computing - Cloud Computing in IIoT, Fog Com	puti	ng ii	n Ho	оT,
Security					
UNIT V					9
	al IOT- Application Domains: Oil, chemical and pharmaceutical industry, A				
	n Industries, Real case studies: Milk Processing and Packaging Industries, N	Aanu	ifact	urin	g
Industri			DET		Da
COUD	TOTAL	_:45	PEF		DS
	SE OUTCOMES:				
At the e	end of the course the student will be able to	•		1 .	•
CO1:	Describe the basic concepts and Architectures of Internet of The	nings	5, IVI	acn	ine
CO2:	learning, Big Data Analytics and Cloud ComputingDescribe the various layers of the Internet of Things and their relative	imn	orto	200	
		mp	ona	ice	
CO3:	Implement different IoT platforms and security measuresAnalyze the importance of Data Analytics in IoT				
CO4:		d to	LoT		
CO5:	Analyze the challenges, developments, and applications that are relate ENCES :		101		
4	Industry 4.0: The Industrial Internet of Things", by Alasdair Gilchrist (Ap	rocc)	201	7	
1					1
	"Industrial Internet of Things: Cybermanufacturing Systems" by S	abin	a Jo	esch	ке,
2	ChristianBrecher, Houbing Song, Danda B. Rawat (Springer), 2017				
3	Hands-On Industrial Internet of Things: Create a powerful Industrial IoT I	by G	acol	no	
4	Veneri, Antonio Capasso, Packt, 2018.		1	I.	
4	"Industrial IoT Challenges, Design Principles, Applications, and Secur	nty,"	bу	ISIT	1811
	Butun, 2020.				
E	Industrial Internet of Things Technologies Design and Applications Co-	dam	The	I Lor-	0.00
5	Industrial Internet of Things, Technologies, Design, and Applications, Su Tariq, Gyanendra Prasad Joshi, Vijender Kumar Solanki, 2022.	dan .	lha,	Usn	nan

Course		Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6				
C01	2	2	-	-	1	-				

CO2	2	2	_	-	1	-
CO3	2	2	1	1	1	-
CO4	2	2	1	1	1	1
CO5	2	2	1	1	1	1
СО	2	2	1	1	1	1

Unit No. and Title	Total 2	Total 16		Cognitiv	ve Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I:	2	1either or	2(2)-CO1	1either or	-	-
INTRODUCTION				(16)-CO1		
AND						
ARCHITECTURE						
OF IoT						
Unit-II:	2	1either or	2(2)-CO2	1either or	-	-
INDUSTRIAL IoT				(16)-CO2		
Unit-III: IIOT	2	1either or	1(2)-CO3	1(2)-CO3	-	-
ANALYTICS				leither or		
				(16)-CO3		
Unit-IV:. IOT	2	1either or	1(2)-CO3	1(2)-CO3	-	-
SECURITY				leither or		
				(16)-CO4		
Unit-V: CASE	2	1either or	1(2)-CO3	1(2)-CO5	1either	-
STUDY					or	
					(16)-	
					CO5	
Total Qns. Title:	10	5either or	7(2)	3(2)	1	-
				4 either or	either	
				(16)	or	
					(16)	
Total Marks	20	80	14	70	16	-
Weightage	20%	80%	14%	70%	16%	-
·		Weig	htage for CO		<u> </u>	
	CO1	CO2	CO3	CC)4	CO5
Total Marks	20	20	20	20)	20
Weightage	20%	20%	20%	20	%	20%

SEMESTER II, PROFESSIONAL ELECTIVE III

AE22221	QUANTUM COMPUTING	L	Р	C					
		3	0	0	3				
COURSE	OBJECTIVES:								
•	• To introduce the building blocks of Quantum computers and highlight the paradigm								
	changebetween conventional computing and quantum computing								
•	To understand the Quantum state transformations and the algorithms								
•	• To understand entangled quantum subsystems and properties of entangled states								
•	To explore the applications of quantum computing								
UNIT I	QUANTUM BUILDING BLOCKS								

	antum Mechanics of Photon Polarization, Single-Qubit Quantum Systems, Quantum Sta	
-	Entangled States, Multiple-Qubit Systems, Measurement of Multiple-Qubit States, EF	'R
	and Bell's Theorem, Bloch sphere	
UNIT I		9
-	Transformations, Quantum Gates, Unitary Transformations as Quantum Circuit	
	ble Classical Computations to Quantum Computations, Language for Quantu	m
	entations.	
UNIT I	C C	9
	ting with Superpositions, Quantum Subroutines, Quantum Fourier Transformations, Shor	.'s
	hm and Generalizations, Grover's Algorithm and Generalizations	
UNIT I		9
	COMPUTATION	
-	m Subsystems, Properties of Entangled States, Quantum Error Correction, Graph state	es
and cod	es, CSS Codes, Stabilizer Codes, Fault Tolerance and Robust Quantum Computing	
UNIT V	V QUANTUM INFORMATION PROCESSING	9
Limitati	ions of Quantum Computing, Alternatives to the Circuit Model of Quantum Computatio	m,
Quantu	m Protocols, Building Quantum, Computers, Simulating Quantum Systems, Bell state	es.
Quantu	m teleportation. Quantum Cryptography, no cloning theorem	
	TOTAL:45 PERIOD)S
COUR	SE OUTCOMES:	
Upon t	he completion of course, students will be able to	
CO1:	Explain the basic principles and algorithms of quantum computing	
CO2:		
CO3:	Develop several algorithms for quantum computing	
CO4:		
CO5:		
	RENCES:	
1.	John Gribbin, Computing with Quantum Cats: From Colossus to Qubits, 2021	
2.	William (Chuck) Easttom, Quantum Computing Fundamentals, 2021	
3.	Parag Lala, Quantum Computing, 2019	
4.	Eleanor Rieffel and Wolfgang Polak, QUANTUM COMPUTING A Gentle Introductio	n
	2011	[,] 11,
5.	Nielsen M. A., Quantum Computation and Quantum Information, Cambridg UniversityPress.2002	ge
6.	Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Informatio Vol. I:Basic Concepts, Vol II: Basic Tools and Special Topics, World Scientific. 2004	n,
7.	Pittenger A. O., An Introduction to Quantum Computing Algorithms 2000	

Course	Programme Outcomes							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	1	-	-	-		
CO2	2	2	1	-	-	-		
CO3	2	-	1	1	1	-		
CO4	2	-	1	1	1	1		
CO5	2	-	1	1	1	1		
CO	2	2	1	1	1	1		

Unit No. and Title		Total 2	Total 16		(Cognitiv	ve Level	
		Marks	Marks	Rememb	1	rstand	Apply	Analyse(An)
		Qus.	Qus.	er (Kn)	(U	Jn)	(Ap)	Evaluate(Ev)
Unit-I: QUAN	TUM	2	1either	2(2)-CO1	1eith	ner or	-	-
BUILDING BLOC	KS		or		(16)-	-CO1		
Unit-II: QUAN	TUM	2	1either	2(2)-CO2		ner or	-	-
STATE			or		(16)-	-CO2		
TRANSFORMATI	ONS							
Unit-III: QUAN	TUM	2	1either	1(2)-CO3	1(2)-	-CO3	-	-
ALGORITHMS			or		1eith	ner or		
					(16)-	-CO3		
Unit-IV: ENTANC	GLED	2	1either	1(2)-CO3	1(2)-	-CO3	-	-
SUBSYSTEMS	AND		or					
ROBUST QUAN	TUM					er or		
COMPUTATION.					(16)-	-CO4		
Unit-V: QUAN	TUM	2	1either	1(2)-CO3	1(2)-	-CO5	1either	-
INFORMATION			or				or	
PROCESSING							(16)-	
							CO5	
Total Qns. Title:		10	5either	7(2)		(2)	1	-
			or			ner or	either	
					(1	6)	or	
							(16)	
Total Marks		20	80	14	-	0	16	-
Weightage		20%	80%	14%)%	16%	-
· · · · · · · · · · · · · · · · · · ·		r		tage for CO	S			1
	CC		CO2	CO3		CO4		CO5
Total Marks	2		20	20			20	
Weightage	20	%	20%	20%		20%	Ď	20%

CU22222	V22222 VLSI FOR WIRELESS COMMUNICATION							
		3	0	0	3			
COURSE	OBJECTIVES:							
• To	o understand the concepts of basic wireless communication concepts	s.						
• To	o study the parameters in receiver and low noise amplifier design.							
• To	study the various types of mixers designed for wireless communic	ation.						
• To	o study and design PLL and VCO.							
• To	o understand the concepts of transmitters and	po	ower					
ar	nplifiers in wireless communication							
UNIT I	COMMUNICATION CONCEPTS				9			
Introductio	on – Overview of Wireless systems – Standards – Ac	cess	Met	hods	s —			
Modulatio	n schemes – Classical channel – Wireless channel descripti	on –	Path	ı los	s —			
Multipath	fading – Standard Translation							
UNIT II	RECEIVER ARCHITECTURE & LOW NOISE AMPLIFIER	RS			9			
Receiver f	Receiver front end – Filter design – Non-idealities – Design parameters – Noise figure &							
Inputinterc	ept point. LNA Introduction – Wideband LNA design – Narrow	band	LNA	desi	ign:			
Impedance	matching & Core amplifier							
	54							

UNIT II	I MIXERS 9
Balancir	g Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain -
Distortic	on — Noise - A Complete Active Mixer. Switching Mixer — Distortion, Conversion
Gain &	Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer.
	g Mixer - Conversion Gain, Distortion, Intrinsic & Extrinsic Noise in Single Ended
Samplin	
UNIT IV	/ FREQUENCY SYNTHESIZERS 9
	Phase detector — Dividers — Voltage Controlled Oscillators — LC oscillators —
Ring Os	cillators – Phase noise – Loop filters & design approaches – A complete synthesizer
design e	xample (DECT) – Frequency synthesizer with fractional divider
UNIT V	TRANSMITTER ARCHITECTURES & POWER AMPLIFIERS 9
	ter back end design – Quadrature LO generator – Power amplifier design. case study:
GSM	
	TOTAL : 45 PERIODS
	E OUTCOMES:
	nd of the course, the students will be able to:
CO1:	Describe the basic wireless communication concepts.
CO2:	Explain the parameters in receiver and design a low noise amplifier
CO3:	Apply knowledge on various types of mixers designed for wireless communication.
CO4:	Analyze the Phase Lock Loop and Voltage Controlled Oscillator.
CO5:	Design the transmitters and the power amplifiers for wireless communication.
REFER	
1.	Bosco H Leung "VLSI for Wireless Communication", Pearson Education, 2002.
2.	B.Razavi, "RF Microelectronics", Prentice-Hall, 1998.
3.	Behzad Razavi, "Design of Analog CMOS Integrated Circuits" McGraw-Hill, 1999.
4.	Emad N Farag and Mohamed I Elmasry, "Mixed Signal VLSI wireless design – Circuits & Systems", Kluwer Academic Publishers, 2000.
5.	J. Crols and M. Steyaert, "CMOS Wireless Transceiver Design," Boston, Kluwer
	AcademicPub., 1997.
6.	Thomas H.Lee, "The Design of CMOS Radio - Frequency Integrated Circuits",
	Cambridge University Press ,2003.
7.	Prashant Ranjan, Ram Shringar Rao, Krishna Kumar, Pankaj Sharma, "Wireless
	Communication: Advancements and Challenges", CRC Press, 2022.
8.	Forouhar Farzaneh, Ali Fotowat, Mahmoud Kamarei, Ali Nikoofard, Mohammad Elmi,
	"Introduction to Wireless Communication Circuits", River Publishers, 2018.

Course	Programme Outcomes							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	1	2	1	2		
CO2	2	2	2	2	1	2		
CO3	2	2	1	2	2	2		
CO4	2	2	2	2	2	1		
CO5	2	2	1	1	2	2		
CO	2	2	1.4	1.8	1.6	1.8		

Unit No. and Title	Total 2	Total 16		Cognitive	Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I:	2	1either	2(2)-CO1	1either or	_	-
COMMUNICATION		or		(16)-CO1		
CONCEPTS						
Unit-II:	2	1either	2(2)-CO2	1either or	-	-
RECEIVER		or		(16)-CO2		
ARCHITECTURE &						
LOW NOISE						
AMPLIFIERS						
Unit-III:	2	1either	1(2)-CO3	1(2)-CO3	-	-
MIXERS		or				
Unit-IV:				1 either or		
FREQUENCY				(16)-CO3		
SYNTHESIZERS						
Unit-V:	2	1 either	1(2)-CO3	1(2)-CO3	1eithe	-
TRANSMITTER		or			r or	
ARCHITECTURES				1either or	(16)-	
& POWER				(16)-CO4	CO4	
AMPLIFIERS						
Unit-I:	2	1either	1(2)-CO3	1(2)-CO5		-
COMMUNICATION		or				
CONCEPTS				1either or		
Unit-II:				(16)-CO5		
RECEIVER						
ARCHITECTURE &						
LOW NOISE						
AMPLIFIERS						
Unit-III:	10	5either	7(2)	3(2)	1	-
MIXERS		or		4 either or	either	
				(16)	or	
					(16)	
Total Marks	20	80	14	70	16	-
Weightage	20%	80%	14%	70%	16%	-
		Weig	ghtage for COs	s		
	CO1	CO2	CO3	CO4	L	CO5
Total Marks	20	20	20	20		20
Weightage	20%	20%	20%	20%	,	20%

AE22222	MICRO ELECTRO MECHANICAL SYSTEMS	L T P						
		3	0	0	3			
COURSE OBJE	CCTIVES:							
To under	To understand the operation of sensors and actuators							
To under	erstand the operation of major classes of MEMS devices/systems	5						
To give	the fundamentals of standard micro fabrication techniques and p	proces	ses					
To under	• To understand the unique demands, environments and applications of MEMS devices							
To under	erstand RF MEMS, Bio MEMS and MOEMS							

UNIT I	INTRODUCTION TO MEMS 9
Intrinsic C	haracteristics of MEMS – Energy Domains and Transducers- Sensors and Actuators
- Introduc	tion to Micro fabrication - Silicon based MEMS processes - New Materials -
Review of	Electrical and Mechanical concepts in MEMS – Semiconductor devices – Stress
and strain	analysis – Flexural beam bending- Torsional deflection
UNIT II	SENSORS AND ACTUATORS 9
Electrostat	tic sensors – Parallel plate capacitors – Applications – Interdigitated Finger
capacitor-	Piezoresistive sensors - Piezoresistive sensor materials - piezoelectric effects -
-	ric materials-Stress analysis of mechanical elements – Thermal Sensing and
	– Thermal expansion – Thermal couples – Thermal resistors – Thermal Bimorph -
Applicatio	ns - Magnetic Actuators - Micromagnetic components. Advanced machining
processes	
UNIT III	MICROMACHING 9
	nisotropic Etching – Anisotrophic Wet Etching – Dry Etching of Silicon – Plasma
0	Deep Reaction Ion Etching (DRIE) - Isotropic Wet Etching - Gas Phase Etchants -
	es – Basic surface micro machining processes – Structural and Sacrificial Materials
	ation of sacrificial Etch – Striction and Antistriction methods – LIGA Process -
	of 3D MEMS – Foundry process
UNIT IV	POLYMER AND OPTICAL MEMS 9
-	in MEMS – SU-8, PMMA, PDMS, Langmuir – Blodgett Films, Micro System
	n – Photolithography – Ion implantation- Diffusion – Oxidation – Chemical vapour
-	- Etching-Optical MEMS - Lenses and Mirrors - Actuators for Active Optical
MEMS	
UNIT V	OVERVIEW OF MEMS AREAS 9
	chniques for MEMS : Surface bonding , Anodic bonding , Silicon - on - Insulator , wire
-	Sealing — Assembly of micro systems- RF MEMS - switches, active and passive
-	ts, Bio MEMS - Microfluidics, Digital Micro fluidics, Ink jet printer, MOEMS and ional Systems , optical switch, optical cross-connect, tunable VCSEL, micro
bolometers	
	TOTAL : 45 PERIODS
	FED ACTIVITIES:
	Expose the students to occupational environment related to semiconductor devices and MEMS
	Create opportunity for acquiring practical skills of various field instruments in the area of MEMS devices
3. 1	Manage the issues arising during the execution of projects related to MEMS
	OUTCOMES:
At the end	of the course, the students will be able to:
CO1:	Explain the working principles of micro sensors and actuators
CO2:	Summarize the materials used for fabrication of micro machines
CO3:	Design of microsystems based on scaling laws
CO4:	Apply the principles of standard micro fabrication techniques
CO5:	Analyse the design and fabrication challenges in RF, Bio, and MOEMS systems
REFEREN	
1.	Stephen D Senturia, 'Microsystem Design', Springer Publication, 2000
2.	Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012
3.	Marc J. Madou, 'Fundamentals of Microfabrication: The Science of Miniaturization',
5.	
4.	Second Edition , 2002. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech
4.	Second Edition , 2002. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.
	Second Edition , 2002. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	2	1	-	-			
CO2	2	-	2	1	-	-			
CO3	2	2	2	2	1	-			
CO4	2	2	2	2	1	-			
CO5	2	2	2	2	1	1			
СО	2	2	2	1.6	1	1			

Unit No. and Title	Total 2	Total 16			Co	gnitive	Level		
	Marks	Marks	Rer	nember	Und	erstand	Apply	Analyse(An)	
	Qus.	Qus.	((Kn)	(Un)	(Ap)	Evaluate(Ev)	
Unit-I:	2	1either	2(2	2)-CO1	1eit	her or	-	-	
INTRODUCTIO		or			(16))-CO1			
N TO MEMS									
Unit-II:	2	1either	2(2	2)-CO2	1eit	her or	-	-	
SENSORS AND		or			(16))-CO2			
ACTUATORS									
Unit-III: MICRO	2	1either	1(2	2)-CO3	1(2))-CO3	-	-	
MACHING		or			1eit	her or			
					(16))-CO3			
Unit-IV:	2	1either	1(2	2)-CO3	1(2))-CO3	-	-	
POLYMER AND		or			1eit	her or			
OPTICAL MEMS					(16))-CO4			
Unit-V:	2	1either	1(2	2)-CO3	1(2))-CO5	1either	-	
OVERVIEW OF		or					or		
MEMS AREAS							(16)-		
							CO5		
Total Qns. Title:	10	5either		7(2)	3	3(2)	1 eithe	r –	
		or			4 ei	ther or	or		
					· · · · · · · · · · · · · · · · · · ·	16)	(16)		
Total Marks	20	80		14		70	16	-	
Weightage	20%	80%		14% 70%		'0%	16%	-	
			-	age for CO					
	CO1	CC)2	CO3		CO	4	CO5	
Total Marks	20	20		20		20		20	
Weightage	20%	209	%	20%		20%	6	20%	

AE22223	3 CAD FOR VLSI DESIGN	L	Т	Р	С
		3	0	0	3
COURSE	COBJECTIVES:				
• [To introduce the VLSI design methodologies and design methods.				
• 7	• To introduce data structures and algorithms required for VLSI design.				
• 7	To study algorithms for partitioning and placement.				

•	To study algorithms for floor planning and routing.	
	To study algorithms for modelling, simulation and synthesis.	
UNIT I	INTRODUCTION	9
	tion to VLSI Design Methodologies – VLSI Design Cycle – New Trends in V	-
	Cycle – Physical Design Cycle – New Trends in Physical Design Cycle – Design Cycl	
	Reviewof VLSI Design Automation Tools	sign
UNIT II		9
	tion to Data Structures and Algorithms – Algorithmic Graph Theory	-
	ational Complexity – Tractable and Intractable Problems – General Purpose Meth	
	binatorial Optimization	1005
UNIT II		9
		raph
•	tion – Partitioning – Placement – Placement Algorithms	apii
UNIT IV		9
		-
	nning – Problem Formulation – Floorplanning Algorithms – Routing – A	nea
UNIT V	-Global Routing - Detailed Routing MODELLING, SIMULATION AND SYNTHESIS	9
	on – Gate Level Modeling and Simulation – Logic Synthesis and Verification	-
)II —
Dinary D	Decision Diagrams – High Level Synthesis. TOTAL:45 PERIC	סתר
	IUIAL.451ERIC	505
COURS	E OUTCOMES:	
At the en	nd of the course, the students will be able to:	
CO1:	Describe the different data structures and algorithms required for VLSI design	
CO2:	Discuss various VLSI design methodologies.	
CO3:		
CO4:	Compare various VLSI design algorithms	
	Compare various VLSI design algorithms Develop algorithms for partitioning, placement, floor planning and routing	
CO5:		
	Develop algorithms for partitioning, placement, floor planning and routing Design algorithms for modelling, simulation and synthesis	
CO5:	Develop algorithms for partitioning, placement, floor planning and routing Design algorithms for modelling, simulation and synthesis	iley-
CO5: REFERI	Develop algorithms for partitioning, placement, floor planning and routing Design algorithms for modelling, simulation and synthesis ENCES:	iley-
CO5: REFERI	Develop algorithms for partitioning, placement, floor planning and routing Design algorithms for modelling, simulation and synthesis ENCES: Sabih H. Gerez, "Algorithms for VLSI Design Automation", Second Edition, Wi India, 2017	•
CO5: REFERI 1.	Develop algorithms for partitioning, placement, floor planning and routing Design algorithms for modelling, simulation and synthesis ENCES: Sabih H. Gerez, "Algorithms for VLSI Design Automation", Second Edition, Wi	•
CO5: REFERI 1.	Develop algorithms for partitioning, placement, floor planning and routing Design algorithms for modelling, simulation and synthesis ENCES: Sabih H. Gerez, "Algorithms for VLSI Design Automation", Second Edition, Wi India, 2017 Naveed a. Sherwani, "Algorithms for VLSI Physical Design Automation", 3 rd Edit	tion,
CO5: REFERI 1. 2.	Develop algorithms for partitioning, placement, floor planning and routing Design algorithms for modelling, simulation and synthesis ENCES: Sabih H. Gerez, "Algorithms for VLSI Design Automation", Second Edition, Wi India, 2017 Naveed a. Sherwani, "Algorithms for VLSI Physical Design Automation", 3 rd Edit Springer,2017 Charles J. Alpert, Dinesh P. Mehta and Sachin S Sapatnekar, "Handbook	tion,
CO5: REFERI 1. 2.	Develop algorithms for partitioning, placement, floor planning and routing Design algorithms for modelling, simulation and synthesis ENCES: Sabih H. Gerez, "Algorithms for VLSI Design Automation", Second Edition, Wi India, 2017 Naveed a. Sherwani, "Algorithms for VLSI Physical Design Automation", 3 rd Edit Springer,2017	tion,
CO5: REFERI 1. 2. 3.	Develop algorithms for partitioning, placement, floor planning and routing Design algorithms for modelling, simulation and synthesis ENCES: Sabih H. Gerez, "Algorithms for VLSI Design Automation", Second Edition, Wi India, 2017 Naveed a. Sherwani, "Algorithms for VLSI Physical Design Automation", 3 rd Edit Springer,2017 Charles J. Alpert, Dinesh P. Mehta and Sachin S Sapatnekar, "Handbook Algorithms forPhysical Design Automation, CRC Press, 1 st Edition, 2.	tion,
CO5: REFERI 1. 2. 3.	Develop algorithms for partitioning, placement, floor planning and routing Design algorithms for modelling, simulation and synthesis ENCES: Sabih H. Gerez, "Algorithms for VLSI Design Automation", Second Edition, Wi India, 2017 Naveed a. Sherwani, "Algorithms for VLSI Physical Design Automation", 3 rd Edit Springer,2017 Charles J. Alpert, Dinesh P. Mehta and Sachin S Sapatnekar, "Handbook Algorithms forPhysical Design Automation, CRC Press, 1 st Edition, 2. N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Acade	tion, c of emic

Course	Programme Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	-	-	1	2	-	-					
CO2	-	-	1	2	-	-					
CO3	-	-	1	2	-	-					
CO4	-	-	1	2	-						
CO5	-	-	1	2	2	-					
СО	-	-	1	2	2	-					

Unit No. and Title	Total 2	Total 16		Cognitive	Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I:	2	1either	2(2)-CO1	1either or	-	-
INTRODUCTION		or		(16)-CO1		
Unit-II: DATA	2	1either	2(2)-CO2	leither or	-	-
STRUCTURES		or		(16)-CO2		
AND BASIC						
ALGORITHMS						
Unit-III:	2	1either	1(2)-CO3	1(2)-CO3	-	-
ALGORITHMS		or		1 . 1		
FOR				leither or		
PARTITIONING				(16)-CO3		
AND PLACEMENT Unit-IV:.	2	1either	1(2) CO2	1(2) CO2	1either	
ALGORITHMS	Z		1(2)-CO3	1(2)-CO3		-
FOR FLOOR		or			(16)	
PLANNING AND					(16)- CO4	
ROUTING AND					004	
Unit-V:	2	1either	1(2) CO2	1(2) CO5		
MODELLING,	2		1(2)-CO3	1(2)-CO5		-
SIMULATION		or		1either or		
AND SYNTHESIS				(16)-CO5		
Total Qns. Title:	1	5either	7(2)	3(2)	1 either	
AE22223-CAD	1	or	/(2)	4 either or	or	-
FORVLSI DESIGN		U		(16)	(16)	
	20	80	1.4	70	. ,	
Total Marks	_		14		16	-
Weightage	20%	80%	14%	70%	16%	-
		we	ightage for CO	'S		1

	CO1	CO2	CO3	CO4	CO5
Total Marks	20	20	20	20	20
Weightage	20%	20%	20%	20%	20%

AE22224	HARDWARE SECURE COMPUTING	L	Τ	Р	С
		3	0	0	3
COURSE (OBJECTIVES:				
•	Describe the fundamental principles in Data security				
•	Discuss the watermarking algorithms and its usage				
•	Explain the physical attacks and Modular arithmetic security methods				
•	Describe the memory based attacks and vulnerabilities using deceptive n	nech	anis	ms	
•	Discuss the methods of FPGA implementation of cryptographic algorithm	ms			
UNIT I	INTRODUCTION TO CRYPTO ALGORITHMS				9
Cryptograp	hy basics, Cryptographic algorithms - Symmetric Key algorithms	, Pı	ıblic	Ke	ey
algorithms a	and Hash Algorithms, Data Encryption Standards, Advanced Encrypt	ion	Stan	dard	ls,
RSA, BowH	Fish				
UNIT II	HARDWARE SECURITY				9

Need for Hardware Security, Computer Memory and storage, Bus and Interconnection, I/O and Network Interface, CPU; Side channel Analysis: Power Analysis Attack, Timing Attack, Fault attack. Counter measures of Side Channel Attack, Secure Hardware Intellectual Properties

UNIT III PHYSICAL ATTACKS AND MODULAR EXPONENTIATION

Physical Attacks (PA) Basics, Physical Attacks and Countermeasures, Building Secure Systems, Modular Exponentiation (ME) Basics, ME in Cryptography, ME Implementation and Vulnerability, Montgomery Reduction

UNIT IV ATTACKS AND COUNTER MEASURES

Introduction to Side Channel Attacks, Memory Vulnerabilities and Cache Attacks, Power Analysis, More Attacks and Countermeasures, Modified Modular Exponentiation, Hardware Trojan (HT) and Trusted IC, Hardware Trojan Taxonomy, Hardware Trojan Detection Overview, Hardware Trojan Detection Methods, Trusted IC Design with HT Prevention

UNIT V EMERGING TECHNOLOGIES

FPGA Implementation of Crypto algorithms, Vulnerabilities and Countermeasures in FPGA Systems, Role of Hardware in Security and Trust, Physical Unclonable Functions (PUF) Basics, Reliability, Trust Platform Modules

COURSE OUTCOMES:

At the end of the course, the students will be able to:

At the e	nu of the course, the students will be able to:
CO1:	Infer the basics concepts of Cryptography
CO2:	Employ the mechanism of Data Integrity protection mechanisms
CO3:	Analyze the counter measures for physical attacks and the use of Modularexponentiation
CO4:	Frame appropriate counter measures for various attacks
CO5:	Solve the challenges in Realization using VLSI implementations exponentiation(K2)
REFER	ENCES:
1.	Debdeep Mukhopadhyay and Rajat Subhra Chakraborty, Hardware Security: Design,
	Threats, and Safeguards, CRC Press, 2014
2.	Tehranipoor, Mohammad, Wang, Introduction to Hardware Security and Trust,
	Springer,2011
3.	Ted Huffmire, Handbook of FPGA Design Security, Springer,2010
4.	Stefan Mangard, Elisabeth Oswald, Thomas Popp, Power Analysis Attacks - Revealing
	theSecrets of Smart Cards, Springer,2007
5.	Doug Stinson, Cryptography Theory and Practice, CRC Press,2018

Mapping of Course Outcomes to Programme Outcomes

Course	Programme Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	2	1	2	2	2	2					
CO2	2	1	2	2	2	2					
CO3	2	1	2	2	2	2					
CO4	2	1	2	2	2	2					
CO5	2	1	2	2	2	2					
СО	2	1	2	2	2	2					

9

TOTAL:45 PERIODS

9

9

Unit No. and	Total 2	Total	16		С	ognitiv	e Level		
Title	Marks	Marl	ks Rer	nember	Under	stand	App	oly	Analyse(An)
	Qus.	Qus	5. ((Kn)	(U	n)	(A	•	Evaluate(Ev)
Unit-I:	2	1eithe	r or 2(2	2)-CO1	1eithe	er or	-		-
Introduction To					(16)-0	CO1			
Crypto									
Algorithms									
Unit-II:	2	1eithe	r or 2(2	2)-CO2	1eithe	er or	-		-
Hardware					(16)-0	CO2			
Security									
Unit-III:	2	1eithe	r or 1(2	2)-CO3	1(2)-0	CO3	-		-
Physical									
Attacks And					1eithe				
Modular					(16)-0	CO3			
Exponentiation									
Unit-IV:.	2	1eithe	r or 1(2	2)-CO3	1(2)-0	1(2)-CO3		er or	-
Attacks And					ļ ((16)-0	CO4	
Counter									
Measures									
Unit-V:	2	1eithe	r or 1(2	2)-CO3	1(2)-0	CO5			-
Emerging					1eithe	er or			
Technologies					(16)-0	CO5			
Total Qns. Title:	10	5eithe	r or	7(2)	3(2	2)	1 eith	er or	-
AE22224					4 eith	er or	(16	5)	
Hardware					(16	5)			
Secure									
Computing									
Total Marks	20	80		14	70		16	-	-
Weightage	20%	80%		14%		%	16	%	-
	1		Weight	age for C	Os				
	CO1		CO2	CC	03 C(CO4		CO5
Total Marks	20		20	20)	2	0	20	
Weightage	20%		20%	209	%	20)%		20%

SEMESTER III, PROFESSIONAL ELECTIVE IV

AE22311	MODELING AND SYNTHESIS WITH HDL	L	Τ	P	С
		3	0	2	4
COURSE C	DBJECTIVES:				
• To k	now the basic language features of Verilog HDL and its the role in di	gital l	ogic	desig	gn.
• To k	now the behavioral modeling of combinational and sequential circuits	5.			
• To k	now the behavioral modeling of algorithmic state machines.				
• To k	now the synthesis of combinational and sequential descriptions.				
• To k	now the architectural features of programmable logic devices.				
UNIT I	INTRODUCTION TO LOGIC DESIGN WITH VERILOG				7
	f Digital Design with Verilog HDL - Hierarchical Modeling Concep				
bottom-up o	lesign methodology, differences between modules and module ins	stance	s, pa	arts (of a

	n, design block, stimulus block - Basic Concept- Modules and Ports: Module definitio
-	aration, connecting ports, hierarchical name referencing. Tasks and Functions.
UNIT II	
	rel Modeling : Modeling using basic Verilog gate primitives, description of and/or ar
-	ype gates, rise, fall and turn-off delays, min, max, and typical delays. Dataflow Modelin,
	us assignments, delay specification, expressions, operators, operands, operator type
	al Modeling: Structured procedures, initial and always, blocking and nonblockir
	ts, delay control, generate statement, event control, conditional statements, multiwa
-	g, loops, sequential and parallel blocks.
UNIT II	
	of combinational logic: adders, multiplexers, de-multiplexers, encoders and decoder
-	ors, multipliers - Design of Sequential logic: Flip-flops, synchronous and Asynchronou
	shift registers, Universal shift register, FSM and LFSR.(Using various Levels of
Modeling	
UNIT IV	
	ynthesis with verilog HDL-Synthesis Design flow, RTL and Test Bench Modelin
-	es and Timing and Path Delay Modeling, Timing Checks, Switch Level Modeling, cas
	nthsizable FIFO model.
UNIT V	
0	nable logic devices, storage devices, programmable logic array programmable array logic
programm	nability of PLDs CPLDs.
	TOTAL: 45 PERIOD
PRACTI	ICAL EXERCISES: 30 PERIOD
1. Desigr	1 Using VHDL Or Verilog Using HDL Languages of .
I. C	ombinational Circuits namely 8:1 Mux/Demux, Full Adder, 8-Bit Magnitud
С	omparator, Encoder/Decoder, Priority Encoder.
II. Se	equential Circuits namely D-FF, 4-Bit Shift Registers (SISO, SIPO, PISO, Bidirectional
	- Bit Synchronous Counters.
	t Vector Generation and Timing Analysis of Sequential and Combinational Logic Desig
	exercise (1) above.
	nthesis, P&R And Post P&R Simulation of the Components Simulated In (1) Above.
	Implementation of PCI Bus & Arbiter. Verifying Design Functionality Using Either
-	cope Feature (Xilinx) /the Signal Tap Feature (Altera)/Other Equivalent Feature . Invol
the PL	L And Demonstrate the Use of the PLL Module for Clock Generation in FPGAs.
	TOTAL PERIODS:7
	E OUTCOMES:
	id of the course, the students will be able to:
CO1:	Explain the basics of digital logic design using Verilog HDL.
CO2:	Illustrate various levels of modelling.
CO3:	Design combinational and sequential logic using various levels of modeling in HDL.
CO4:	Explain logic synthesis and design flow.
CO5:	Explain the architectural features of programmable logic devices.
REFERI	
	chael D Ciletti - Advanced Digital Design with the VERILOG HDL, 2 nd Edition, PH
200	
	arles H. Roth Jr., Lizy K. John, "Digital design using HDL", Cengage Learning, This
	tion, 2016.
	nan Lata Tripathi, Sobhit Saxena, Sanjeet K. Sinha, "Digital VLSI Design and Simulatic
	h Verilog", John Wiley & Sons., 2022. Iavabi - Verilog Digital System Design, 2nd Edition, McGraw Hill, 2005.4
4. Z N	original Monto Theorem Nacion Und Lideteon Mod Server 1411 (1005 /

5. Stephen Brown and Zvonko Vranesic - Fundamentals of Digital Logic with Verilog, 2nd Edition, TMH, 2008.

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	2	1	2	1			
CO2	2	-	2	1	2	1			
CO3	2	-	2	1	2	1			
CO4	2	-	2	1	2	1			
CO5	2	-	2	1	2	1			
СО	2	-	2	1	2	1			

Mapping of Course Outcomes to Programme Outcomes

Unit No. and Title	Total 2	Total 16		Cognitive	e Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I: Introduction to	2	1either or	2(2)-CO1	1either or	-	-
Logic Design with				(16)-CO1		
Verilog						
Unit-II:	2	1either or	2(2)-CO2	1either or	-	-
Levels of Modeling				(16)-CO2		
Unit-III:	2	1either or	1(2)-CO3	1(2)-CO3	1either	-
Design of Digital					or	
Logic using HDL					(16)-	
					CO3	
Unit-IV:	2	1 either or	1(2)-CO4	1(2)-CO4	-	-
Logic Synthesis and				1 either or		
Design Flow				(16)-CO4		
Unit-V:	2	1either or	2(2)-CO5	1 either or		-
Programmable Logic				(16)-CO5		
Devices						
Total Qns. Title:	10	5either or	8(2)	2(2)	1	-
AE22311MODELING				4 either or	either	
AND SYNTHESIS				(16)	or	
WITH HDL					(16)	
Total Marks	20	80	16	68	16	-
Weightage	20%	80%	16%	68%	16%	-

MX22313	DEEP LEARNING	L	Т	Р	С			
		3	0	2	4			
COURSE (OBJECTIVES:							
•	To develop and Train Deep Neural Networks.	To develop and Train Deep Neural Networks.						
•	To develop a CNN for object detection and recognition.							
•	• To build and train RNNs, to solve real-world problems.							
•	To study the structure of LSTM and GRU and the differences between them							
•								

UNIT I	INTRODUCTION TO DEEP LEARNING 9
Review	of Neural Networks- Building Blocks of Neural Network. Multilayer Perceptron, Back-
	ion algorithm and its variants Stochastic gradient decent, Optimizers. Activation Functions.
	inctions, Data Pre-processing for neural networks, Overfitting and Underfitting.
	rameters, Deep networks
UNIT II	
CNN. A	rchitecture- Input Layers, Convolution Layers. Pooling Layers. Dense Layers, Filters and
	Maps, Dropout Layers and Regularization, Batch Normalization. Various Activation
	s. Various Optimizers. Popular CNN Architectures: LeNet, AlexNet, VGG16, ResNet,
UNet	
UNIT II	I TRANSFER LEARNING & SEQUENCE MODELLING 9
Transfer	Learning with Image Data. RCNN, Fast R-CNN, Faster R-CNN, Mask-RCNN, YOLO.
Recurren	t Neural Networks, Bidirectional RNNs (BRNN). Long Short-Term Memory (LSTM). Bi-
direction	al LSTM. Sequence-to-Sequence Models (Seq2Seq). Gated recurrent unit GRU.
UNIT IV	DEEP REINFORCEMENT & UNSUPERVISED LEARNING 9
About D	Deep Reinforcement Learning. Q-Learning. Deep Q-Network (DQN). Policy Gradient
Methods	. Actor-Critic Algorithm. About Autoencoding. Convolutional Auto Encoding.
Variation	al Auto Encoding. Generative Adversarial Networks.
UNIT V	APPLICATIONS OF DEEP LEARNING 9
Autoenco	oders for Feature Extraction. Auto Encoders for Classification. Denoising Autoencoders.
Sparse A	utoencoders. Case studies-Deep Neural network for Medical image segmentation
	TOTAL :45 PERIODS
PRACT	ICAL EXERCISES: 30 PERIODS
LIST OI	FEXPERIMENTS
1. In	nplement a perceptron in TensorFlow/Keras Environment.
2. In	nplement a Feed-Forward Network in TensorFlow/Keras. for signal / Image data.
3. Ir	nplement an Image Classifier using CNN in TensorFlow/Keras for abnormal detection.
4. Ir	nplement a Transfer Learning concept for medical Image Classification.
5. I	mplement an Autoencoder in TensorFlow/Keras and improve the deep learning model by
tu	ining hyper parameters
6. Ir	nplement a Simple LSTM using TensorFlow/Keras
	nplement a classifier in Recurrent Neural network.
	TOTAL :75 PERIODS
COURS	E OUTCOMES:
At the er	nd of the course, the students will be able to:
CO1:	Realize neural network for data preprocessing and feature extraction.
CO2:	Understand CNN architecture for object detection.
CO3	Understand transfer learning and recurrent networks
CO4:	Analyze the Deep Reinforcement & Unsupervised Learning networks
CO5:	Apply deep learning network for Feature Extraction and Classification
REFER	
1.	Deep Learning A Practitioner's Approach Josh Patterson and Adam Gibson O'Reilly
1.	Media, Inc.2017.
2.	Learn Keras for Deep Neural Networks, Jojo Moolayil, Apress, 2018.
3.	Deep Learning Projects Using TensorFlow 2, Vinita Silaparasetty, Apress, 2020.
4.	Deep Learning with Python, François Chollet, Manning Shelter Island,2017.
<u>4.</u> 5.	Pro Deep Learning with TensorFlow, Santanu Pattanayak, Apress, 2017.
	I lan Goodtellow Yoshija Rengio and Aaron Courville " Deen Learning" MIT Press
6.	Ian Goodfellow, YoshuaBengio and Aaron Courville, "Deep Learning", MIT Press, 2017
	 Ian Goodfellow, YoshuaBengio and Aaron Courville, "Deep Learning", MIT Press, 2017. Umberto Michelucci "Applied Deep Learning. A Case-based Approach to Understanding

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	-	-	2	1			
CO2	1	-	-	1	2	1			
CO3	1	-	-	1	2	1			
CO4	1	-	-	2	2	1			
CO5	1	-	-	2	2	1			
CO	1	-	-	1.5	2	1			

Unit No. and Title	Total 2	Total 16	Cognitive Level					
	Marks	Marks	Remember	Understand	Apply	Analyse(An)		
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)		
Unit-I:	2	1either or	2(2)-CO1	leither or	-	-		
INTRODUCTION				(16)-CO1				
TO DEEP								
LEARNING								
Unit-II:	2	1either or	2(2)-CO2	leither or	-	-		
CONVOLUTIONAL				(16)-CO2				
NEURAL								
NETWORK								
Unit-III:	2	1either or	1(2)-CO3	1(2)-CO3	-	-		
TRANSFER								
LEARNING &				1either or				
SEQUENCE				(16)-CO3				
MODELLING								
Unit-IV: DEEP	2	1either or	1(2)-CO4	1(2)-CO4	-	1 either or		
REINFORCEMENT						(16)-CO4		
& UNSUPERVISED								
LEARNING								
Unit-V:	2	1either or	1(2)-CO5	1(2)-CO5	1either	-		
APPLICATIONS					or			
OF DEEP					(16)-			
LEARNING					CO5			
Total Qns.	10	5either or	7(2)	3(2)	1 either	1 either or		
				3 either or	or	(16)		
				(16)	(16)			
Total Marks	20	80	14	54	16	16		
Weightage	20%	80%	14%	54%	16%	16%		

AE22312	DIGITAL IMAGE PROCESSING	L	Τ	Р	С				
		3	0	2	4				
COURSE C	COURSE OBJECTIVES:								
• To u	nderstand the image fundamentals and mathematical transforms ne	ecess	sary	for in	nage				

	ocessing and to study the image enhancement techniques.	
• 10	o understand the image segmentation and representation techniques.	
	o understand how image are analyzed to extract features of interest.	
	introduce the concepts of image registration and image fusion.	
UNIT I	FUNDAMENTALS OF DIGITAL IMAGE PROCESSING	9
		-
	of visual perception, brightness, contrast, hue, saturation, match band effect, 2D is	
	s - DFT, DCT, KLT, and SVD. Image enhancement in spatial and frequency do	mam,
UNIT II	gical image processing, Fundamentals of Color Image Processing. FEATURE EXTRACTION	0
		9
	second order edge detection operators, Phase congruency, Localized feature extra image curvature, shape features Hough transform, shape skeletonization, Bou	
	s, Moments, Texture descriptors- Autocorrelation, Co-occurrence features, Run 1	
-	Fractal model-based features, Gabor filter, wavelet features.	engui
UNIT III		9
		-
-	ection, Thresholding, Region growing, Fuzzy clustering, Watershed algorithm, A	
	methods, Model based segmentation, Atlas based segmentation, Wavelet	Daseu
0	tion methods. IMAGE REGISTRATION	0
		9
	on- Pre-processing, Feature selection-points, lines, regions and templates Fe	
	idence-Point pattern matching, Line matching, region matching Template matching	
	nation functions-Similarity transformation and Affine Transformation. Resample	Jung-
UNIT V	eighbour and Cubic Splines. IMAGE FUSION	9
		-
-	sion-Overview of image fusion, pixel fusion, Multiresolution based fusion dia ansforms, Curvelet transform. Region based fusion.	sciele
wavelet u	TOTAL: 45 PER	
PRACTI	CAL EXERCISES: 30 PERI	
	EXPERIMENTS SUITER	005
• W	Versiet and DCT based Image Companying	
	averet and DCT based image Compression	
	Vavelet and DCT based Image Compression	
	eometrical transformations and Interpolation of Images	
• E	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector	
• E • R	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation	
• E • R • Ir	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT	
E R R Ir T	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction	
E R R Ir T	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction nage fusion using Wavelets	
E R Ir T Ir Ir	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction nage fusion using Wavelets TOTAL:75 PERI	IODS
E R Ir T Ir T COURSH	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction nage fusion using Wavelets TOTAL:75 PERI COUTCOMES:	ODS
E R In T T COURSH At the en	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction nage fusion using Wavelets TOTAL:75 PERI C OUTCOMES: d of the course, the students will be able to:	ODS
 E R Ir T T Ir COURSE At the en CO1:	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction nage fusion using Wavelets TOTAL:75 PERI COUTCOMES: d of the course, the students will be able to: State the fundamental concepts of image processing.	ODS
• E • R • Ir • T • Ir • Ir • COURSH • At the en CO1: CO2:	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction nage fusion using Wavelets TOTAL:75 PERI COUTCOMES: d of the course, the students will be able to: State the fundamental concepts of image processing. Describe the image analysis techniques in the form of image segmentation.	IODS
 E R In T In COURSE At the en CO1: CO2: CO3:	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction nage fusion using Wavelets TOTAL:75 PERI COUTCOMES: d of the course, the students will be able to: State the fundamental concepts of image processing. Describe the image analysis techniques in the form of image segmentation. Implement various feature extraction techniques.	ODS
• E • R • Ir • T • Ir • COURSE At the en CO1: CO2: CO3: CO3: CO4:	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction nage fusion using Wavelets TOTAL:75 PERI COUTCOMES: d of the course, the students will be able to: State the fundamental concepts of image processing. Describe the image analysis techniques in the form of image segmentation. Implement various feature extraction techniques. Demonstrate the concepts of image registration.	IODS
• E • R • In • T • In • COURSH • At the en CO1: CO2: CO3:	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction nage fusion using Wavelets TOTAL:75 PERI COUTCOMES: d of the course, the students will be able to: State the fundamental concepts of image processing. Describe the image analysis techniques in the form of image segmentation. Implement various feature extraction techniques.	ODS
• E • R • Ir • T • Ir • COURSE At the en CO1: CO2: CO3: CO3: CO4:	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction nage fusion using Wavelets TOTAL:75 PER COUTCOMES: d of the course, the students will be able to: State the fundamental concepts of image processing. Describe the image analysis techniques in the form of image segmentation. Implement various feature extraction techniques. Demonstrate the concepts of image registration. Implement image fusion concepts. NCES:	ODS
• E • R • In • T • In • COURSH • At the en CO1: CO2: CO3: CO3: CO4: CO5:	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction nage fusion using Wavelets TOTAL:75 PERI COUTCOMES: d of the course, the students will be able to: State the fundamental concepts of image processing. Describe the image analysis techniques in the form of image segmentation. Implement various feature extraction techniques. Demonstrate the concepts of image registration. Implement image fusion concepts.	
 E R Ir T Ir COURSE At the en CO1: CO2: CO3: CO4: CO5: REFERE 	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction nage fusion using Wavelets TOTAL:75 PER COUTCOMES: d of the course, the students will be able to: State the fundamental concepts of image processing. Describe the image analysis techniques in the form of image segmentation. Implement various feature extraction techniques. Demonstrate the concepts of image registration. Implement image fusion concepts. NCES:	
• E • R • In • T • In • In • COURSH • At the en CO1: CO2: CO3: CO3: CO4: CO5: REFERE 1.	eometrical transformations and Interpolation of Images dge Detection using Canny edge detector egion based, threshold based and Watershed Segmentation nage filtering using DFT exture, Gabor and Wavelet Feature Extraction nage fusion using Wavelets TOTAL:75 PERI COUTCOMES: d of the course, the students will be able to: State the fundamental concepts of image processing. Describe the image analysis techniques in the form of image segmentation. Implement various feature extraction techniques. Demonstrate the concepts of image registration. Implement image fusion concepts. NCES: John C.Russ, <u>F. Brent Neal</u> , "The Image Processing Handbook", CRC Press, 2017. Mark Nixon, Alberto Aguado, "Feature Extraction and Image Processing", Acad	lemic

5.	Rick S.Blum, Zheng Liu," Multisensor image fusion and its Applications", Taylor &
	Francis,2006.
6.	Gopi E.S, "Digital Image Processing Using MATLAB", Scitech Publications (India) Pvt
	Ltd, 2015.

Course	Programme Outcomes							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	1	2	1	1		
CO2	2	2	1	2	1	1		
CO3	2	2	1	2	1	1		
CO4	2	2	1	2	1	1		
CO5	2	2	1	2	1	1		
СО	2	2	1	2	1	1		

Unit No. and Title	Total 2	Total 16		Cognitive	Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I:	2	1 either	2(2)-CO1	1 either or	-	-
FUNDAMENTALS		or		(16)-CO1		
OF DIGITAL						
IMAGE						
PROCESSING						
Unit-II: FEATURE	2	1 either	2(2)-CO2	1 either or	-	-
EXTRACTION		or		(16)-CO2		
Unit-III:	2	1 either	1(2)-CO3	1(2)-CO3	1either	-
SEGMENTATION		or			or	
					(16)-	
					CO3	
Unit-IV: IMAGE	2	1 either	1(2)-CO4	1(2)-CO4	1 either	-
REGISTRATION		or			or (16)-	
					CO4	
Unit-V:	2	1 either	1(2)-CO5	1(2)-CO5	1either	-
IMAGE FUSION		or			or (16)-	
					CO5	
Total Qns.	10	5either	7(2)	3(2)	3 either	-
Title:AE22312		or		2 either or	or	
DIGITAL IMAGE				(16)	(16)	
PROCESSING						
Total Marks	20	80	14	38	48	-
Weightage	20%	80%	14%	38%	48%	-

MX22203	MACHINE LEARNING TECHNIQUES	L	Т	Р	С				
		3	0	2	4				
COURSE OBJECTIVES:									
	erstand the concepts and mathematical foundations of machine leans tackled by machine learning	rning	and	type	s of				

•	To explore the d	lifferent supervised	learning technique	s including ensemble	e methods
---	------------------	----------------------	--------------------	----------------------	-----------

- To learn different aspects of unsupervised learning and reinforcement learning
- To learn the role of probabilistic methods for machine learning •
- To understand the basic concepts of neural networks and deep learning ٠

UNIT I MATHEMATICAL BACKROUND

Machine Learning-Types of Machine Learning -Machine Learning process, Mathematical Foundations - Linear Algebra - Arithmetic of matrices, Norms, Eigen decomposition, Singular value decomposition. Probability theory – probability distribution, decision theory.

UNIT II SUPERVISED LEARNING

Introduction-Discriminative and Generative Models -Linear Regression - Least Squares -Underfitting / Overfitting -Cross-Validation - Lasso Regression- Classification - Logistic Regression-Gradient Linear Models - Support Vector Machines - Kernel Methods - Instance based Methods - K-Nearest Neighbors - Tree based Methods - Decision Trees - CART - Ensemble Methods - Random Forest.

UNIT III

UNSUPERVISED LEARNING

Introduction - Clustering Algorithms -K – Means – Hierarchical Clustering - spectral clustering-Cluster Validity - Dimensionality Reduction -Principal Component Analysis, Independent Components Analysis. 9

UNIT IV BAYESIAN LEARNING

Introduction -Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -Bayesian Belief Networks - Probabilistic Modelling of Problems - Bayesian Linear Regression.

NEURAL NETWORKS AND DEEP LEARNING UNIT V

Artifitial Neural Networks -- Perceptron -- Multi-layer Perceptron -- Back Propagation -- Activation function and Loss Functions- Introduction to Deep Learning- Convolution Neural Networks -Recurrent Neural Networks – case study.

TOTAL: 45 PERIODS 30 PERIODS

PRACTICAL EXERCISES: LIST OF EXPERIMENTS

- 1. Implement a Linear Regression model and tune the model's hyperparameters.
- 2. Implement a binary classification model determine the model's effectiveness with different classification metrics.
- 3. Classify the normal and abnormal bio signals with Nearest Neighbor classifier.
- 4. Analyze the training and validation results of the classifier. Detect and fix a common training problem.
- 5. Implement the k-means algorithm using https://archive.ics.uci.edu/ml/datasets/Codon+usage dataset
- 6. Implement the Naïve Bayes Classifier using https://archive.ics.uci.edu/ml/ datasets/ Gait+ Classification dataset
- 7. Implement the convolutional neural network for feature extraction and classification of medical images.

TOTAL : 75 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:							
CO1:	Explain the mathematical and statistical prospective of machine learning algorithms						
CO2:	Design a Decision tree and Random forest for an application						
CO3:	Implement Probabilistic Discriminative and Generative algorithms for an application and						
005.	analyze the results						

9

9

9

9

CC	14: Implement Clustering algorithms and HMM for different types of applications						
CC	05: Implement neural network and deep learning algorithms for suitable applications						
REF	ERENCES:						
	Stephen Marsland, "Machine Learning: An Algorithmic Perspective", Chapman & Hall/CRC,						
1	2nd Edition, 2014.						
2	Ethem Alpaydin, "Introduction to Machine Learning", Third Edition, Adaptive Computation						
	and Machine Learning Series, MIT Press, 2014						
3	Tom M Mitchell, "Machine Learning", McGraw Hill Education, 2013.						
4	Shai Shalev-Shwartz and Shai Ben-David, "Understanding Machine Learning: From Theory						
	to Algorithms", Cambridge University Press, 2015.						
5	Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2007.						
6	Hal Daumé III, "A Course in Machine Learning", 2017 (freely available online).						
7	Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning",						
	Springer, 2009 (freely available online).						
8	Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,						
	Tools, and Techniques to Build Intelligent Systems 2nd Edition, o'reilly, (2017).						
9	Kevin P Murphy, Machine Learning: A Probabilistic Perspective, 2nd Edition, MIT Press,						
	2022.						
10	Csaba Szepesvari, Algorithms for Reinforcement Learning (Synthesis Lectures on Artificial						
	Intelligence & Machine Learning), Morgan & Claypool Publishers, 2010						

Course	Programme Outcomes							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	-	-	2	2		
CO2	1	-	2	2	2	2		
CO3	1	-	2	2	2	2		
CO4	1	-	2	2	2	2		
CO5	1	-	2	2	2	2		
СО	1	-	2	2	2	2		

Unit No. and Title	Total 2	Total 16	Cognitive Level					
	Marks	Marks	Remember	Understand	Apply	Analyse(An)		
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)		
Unit-I:	2	1either	2(2)-CO1	1either or	-	-		
MATHEMATICAL		or		(16)-CO1				
BACKROUND								
Unit-II:	2	1either	2(2)-CO2	-	1either	-		
SUPERVISED		or			or			
LEARNING					(16)-			
					CO5			
Unit-III:	2	1either	1(2)-CO3	1(2)-CO3	1either	-		
UNSUPERVISED		or			or			
LEARNING					(16)-			
					CO5			
Unit-IV:	2	1either	1(2)-CO4	1(2)-CO4	1either	-		
BAYESIAN		or			or			

LEARNING					(16)-	
					CO4	
Unit-V: NEURAL	2	1either	1(2)-CO5	1(2)-CO5		-
NETWORKS AND		or		1either or		
DEEP LEARNING				(16)-CO5		
Total Qns.	10	5either	7(2)	3(2)	3 either	-
Title:MX22203		or		2 either or	or	
MACHINE				(16)	(16)	
LEARNING						
TECHNIQUES						
Total Marks	20	80	14	38	48	-
Weightage	20%	80%	14%	38%	32%	-

AE22313	PCB DESIGN	L	Τ	P	С
		3	0	2	4
COURSE ()BJECTIVES:				
• To 1	understand the need for PCB Design and steps involved in PCB Des	ign ar	id Fal	brica	tion
proc	ess				
• To fa	amiliarize Schematic and layout design flow using Electronic Design	Autor	natio	n (E	DA)
Tool	S.				
 Το ι 	understand basic concepts of transmission line, crosstalk and thermal	issue	s.		
• To	design (schematic and layout) PCB for analog circuits, digital	circui	ts an	d m	ixed
circu	iits				
• Sche	matic creation & interpretation.				
UNIT I	INTRODUCTION TO PRINTED CIRCUIT BOARD				9
Fundamenta	l of electronic components, basic electronic circuits, Basics of pr	rinted	circu	iit b	oard
designing:	Layout planning, general rules and parameters, ground conduc	tor c	onsid	erati	ons,
thermal issu	es, check and inspection of artwork.				
UNIT II	DESIGN RULES FOR PCB				9
Design rule	s for Digital circuit PCBs, Analog circuit PCBs, high frequen	ncy ar	nd fa	ist p	ulse
applications	, Power electronic applications, Microwave applications, PCB T	echno	logy	Tre	nds:
Multilayer	PCBs. Multiwire PCB, Flexible PCBs, Surface mount PCBs,	Reflo	w so	older	ring,
Introduction	to High-Density Interconnection (HDI) Technology.				
UNIT III	INTRODUCTION TO ELECTRONIC DESIGN AUTOMATIC	ON(E	DA)		9
	TOOLS FOR PCB DESIGNING				
	to PCB Design using Distress tool, Introduction to PCB Design usi	-	-		
•	gning, Auto routing and manual routing. Assigning specific text (si	lkscre	en) to	o des	sign,
	ort of design, creating manufacturing data (GERBER) for design.				[
UNIT IV	INTRODUCTION PRINTED CIRCUIT BOARD PRODUCTI	ON			9
DI L	TECHNIQUES			1 5	
	ng, film-master production, reprographic camera, basic process for				
	s, Screen printing process, plating, relative performance and quali	ity co	ntrol,	Etc	hing
	olders alloys, fluxes, soldering techniques, Mechanical operations				0
UNIT V	PCB DESIGN FOR EMI/EMC	1:	1 1		<u>9</u>
-	PCB Placement in an enclosure, Filtering circuit placement, decoup	-	-	-	-
	discharge protection, Electronic waste; Printed circuit boards Red to Integrated Circuit Packaging and footprints, NEMA and IPC stan		0	111110	lues,
miroduction	to Integrated Circuit Packaging and footprints, NEMA and IPC stan	AL: 4		7014	ากต
DDACTIC			+5 PF 60 PE		
FRAUIUA	AL EXERCISES:	3	DU FE	/KI(103

LIST OF EXPERIMENTS

- 1. Using any Electronic design automation (EDA) software, Practice following PCB Design steps(Open source EDA Tool KiCad Preferable or equivalent) Example circuit: Basic RC :Circuit Schematic Design: Familiarization of the Schematic Editor
- 2. Schematic creation, Annotation using EDA tool for the given circuit.
- 3. Netlist generation Layout Design: Familiarization of Footprint Editor
- 4. Mapping of components, Creation of PCB layout Schematic.
- 5. Create new schematic components and Create new component footprints.
- 6. Design a single-sided PCB, mount the components and assemble in a cabinet for any one of the circuits mentioned below.

TOTAL : 75 PERIODS

COURSE OUTCOMES:

COURSE OUTCOMES:							
At the end of the course, the students will be able to:							
CO1:	Appreciate the necessity, evolution, types and classes of PCB.						
CO2:	Describe the steps involved in schematic, layout, fabrication and assembly process of PCB design.						
CO3:	Explain advanced techniques, skills and modern tools for designing and fabrication of PCBs.						
CO4:	Apply the knowledge and techniques to fabricate Multilayer, SMT and HDI PCB.						
CO5:	Infer the trends in the design and fabrication of PCB.						
REFERI	ENCES:						
1.	Printed Circuits Handbook, Sixth Edition, by Clyde F.Coombs, Jr, HappyT. Holden, Publisher: McGraw-Hill Education Year: 2016						
2.	Complete PCB Design Using OrCAD Capture and PCB Editor,Kraig Mitzner Bob Doe Alexander Akulin Anton Suponin Dirk Müller, 2nd Edition 2009.						
3.	Introduction to System-on-Package, Rao R ,Tummala,&MadhavanSwaminathan, McGraw Hill, 2008						
4.	Printed circuit board design ,fabrication assembly and testing By R. S. Khandpur, Tata McGraw Hill 2006						
5.	EMC and Printed circuit board, Design theory and layout, Mark I Montrose IEEE compatibility society.						

Mapping of Course Outcomes to Programme Outcomes

Course	Programme Outcomes							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	1	2	2	2	2		
CO2	2	1	2	2	2	2		
CO3	2	1	2	2	2	2		
CO4	2	1	2	2	2	2		
CO5	2	1	2	2	2	2		
СО	2	1	2	2	2	2		

Unit No. and Title	Total 2	Total 16	Cognitive Level				
	Marks	Marks	Remember Understand Apply Analyse(A			Analyse(An)	
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)	
Unit-I:	2	1either	2(2)-CO1	leither or	-	-	
INTRODUCTION TO		or		(16)-CO1			

PRINTED CIRCUIT						
BOARD						
Unit-II: DESIGN	2	1either	2(2)-CO2	1either or	-	-
RULES FOR PCB		or		(16)-CO2		
Unit-III:	2	1either	1(2)-CO3	1(2)-CO3	-	-
INTRODUCTION TO		or				
ELECTRONIC				1either or		
DESIGN				(16)-CO3		
AUTOMATION(EDA)						
TOOLS FOR PCB						
DESIGNING						
Unit-IV:	2	1 either	1(2)-CO4	1(2)-CO4	1either	-
INTRODUCTION		or			or	
PRINTED CIRCUIT					(16)-	
BOARD					CO4	
PRODUCTION						
TECHNIQUES						
Unit-V: PCB DESIGN	2	1 either	1(2)-CO5	1(2)-CO5	-	-
FOR EMI/EMC		or		1either or		
				(16)-CO5		
Total Qns.	10	5either	7(2)	3(2)	1 either	-
Title AE22313		or		4 either or	or	
PCB DESIGN				(16)	(16)	
Total Marks	20	80	14	70	16	-
Weightage	20%	80%	14%	70%	16%	-

SEMESTER III, PROFESSIONAL ELECTIVE V

AE22321	SENSORS AND ACTUATORS	L	Т	Р	С
		3	0	0	3
COURSE (BJECTIVES:				
• Unde	rstand static and dynamic characteristics of measurement systems.				
• Stud	various types of sensors.				
• Stud	v different types of actuators and their usage.				
• Stud	y State-of-the-art digital and semiconductor sensors.				
UNIT I	INTRODUCTION TO MEASUREMENT SYSTEMS				9
Introduction	to measurement systems: general concepts and terminology, measurement	nen	t sys	stem	ıs,
	ification, general input-output configuration, methods of correction,		-		
characteristi	cs: static and dynamic characteristics of measurement systems, zero)-or(der,	firs	st-
order, and se	cond-order measurement systems and response.				
UNIT II	RESISTIVE AND REACTIVE SENSORS				9
Resistive se	nsors: potentiometers, strain gages, resistive temperature detectors, mag	netc	o res	istor	rs,
light-depend	ent resistors, Signal conditioning for resistive sensors: Wheatstone b	orid	ge, i	sens	or
bridge calib	ration and compensation, Instrumentation amplifiers, sources of inter-	erfe	renc	e ar	nd
interference	reduction, Reactance variation and electromagnetic sensors, capacity	itive	e se	ensor	rs,
	inductive sensors, linear variable differential transformers (LVDT), ma				
	effect sensors, Signal conditioning for reactance-based sensors &	<u> </u>			
LVDT.		··r i			
UNIT III	SELF-GENERATING SENSORS				9
0.10	ng sensors: thermoelectric sensors, piezoelectric sensors, pyroelec			ensor	

photovoltaic sensors, electrochemical sensors, Signal conditioning for self-generating sensors: chopper and low-drift amplifiers, offset and drifts amplifiers, electrometer amplifiers, charge amplifiers, noise in amplifiers. UNIT IV ACTUATORS DRIVE CHARACTERISTICS AND APPLICATIONS 9 Relays, Solenoid drive, Stepper Motors, Voice-Coil actuators, Servo Motors, DC motors and motor control, 4-to-20 mA Drive, Hydraulic actuators, variable transformers: synchros, resolvers, Inductosyn, resolver-to-digital and digital-to-resolver converters. UNIT V DIGITAL SENSORS AND SEMICONDUCTOR DEVICE SENSORS 9 Digital sensors: position encoders, variable frequency sensors - quartz digital thermometer, vibrating wire strain gages, vibrating cylinder sensors, Sensors based on semiconductor junctions: thermometers based on semiconductor junctions, magneto diodes and magnetotransistors, MOSFET transistors, CCD imaging sensors, ultrasonic sensors, fiber-optic sensors. Sensors for environmental monitoring. **TOTAL: 45 PERIODS COURSE OUTCOMES:** At the end of the course, the students will be able to: Enumerate terminologies of measuring systems and sensor classifications **CO1:** Explain resistive and reactive sensors **CO2:** Discuss the signal conditioning and noise characteristics of self generating sensors actuators and **CO3:** its drive characteristics Explain sensors actuators and its drive characteristics **CO4:** Illustrate the applications of digital and semiconductor sensors CO5: **REFERENCES:** Andrzej M.Pawlak, "Sensors and Actuators in Mechatronics Design and Applications 1. ", 2006. 2. D.Johnson, "Process Control Instrumentation Technology", John Wiley and Sons, 8th Edition, 2014. D.Patranabis, "Sensors and Transducers", TMH 2003. 3. E.O.Doeblin, "Measurement System: Applications and 4. Design", Hill McGraw publications, 1996. 5. Graham Brooker, "Introduction to Sensors for ranging and imaging", Yesdee, 2009. Herman K.P. Neubrat, "Instrument Transducers – An Introduction to Their 6. Performance and Design", Oxford University Press, 1999. 7. Ian Sinclair, Sensors and Transducers, Elsevier, 3rd Edition, 2011. 8. Jon Wilson, "Sensor Technology Handbook", Newne, 2004. 9. Kevin James, PC Interfacing and Data acquisition, Elsevier, 2011. 10. Ramon PallásAreny, John G. Webster, "Sensors and Signal conditioning", 2nd edition, JohnWiley and Sons, 2000. Sensors and Actuators: Control System Instrumentation, Clarence W. de Silva CRC 11. Press,2007.

Course		Prog	ramme C	Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	2	1	-	2
CO2	2	-	2	1	-	2
CO3	2	-	2	1	-	2
CO4	2	-	2	1	-	2
CO5	2	-	2	1	-	2
СО	2	-	2	1	-	2

Unit No. and Title	Total 2	Total 16		Cognitive	Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I:	2	1 either	2(2)-CO1	1 either or	-	-
INTRODUCTION		or		(16)-CO1		
ТО						
MEASUREMENT						
SYSTEMS						
Unit-II: RESISTIVE	2	1either	2(2)-CO2	leither or	-	-
AND REACTIVE		or		(16)-CO2		
SENSORS						
Unit-III: SELF-	2	1either	1(2)-CO3	1(2)-CO3	-	-
GENERATING		or				
SENSORS				1 either or		
TT '4 TT /	2	1 1	1(2) CO4	(16)-CO3		
Unit-IV:	2	1either	1(2)-CO4	1(2)-CO4	-	-
ACTUATORS DRIVE		or		1 either or		
CHARACTERISTICS				(16)-CO4		
AND				(10) 001		
APPLICATIONS						
Unit-V: DIGITAL	2	1either	1(2)-CO5	1(2)-CO5		
SENSORS AND	Δ	or	1(2)-005	1(2)-CO3	-	-
SEMICONDUCTOR		01		1either or		
DEVICE SENSORS				(16)-CO5		
Total Qns. Title:	10	5either	7(2)	3(2)	_	
AE22321SENSORS	10	or	, (=)	5 either or		
AND ACTUATORS		01		(16)		
Total Marks	20	80	14	86		_
Weightage	20%	80%	14%	86%		-

AE22322	2 DIGITAL HIGH SPEED DESIGN	L	Т	Р	С
		3	0	0	3
COURSE	OBJECTIVES:				
• To	identify sources affecting the speed of digital circuits.				
	introduce methods to improve the signal transmission characteristics				r
UNIT I	SIGNAL PROPAGATION ON TRANSMISSION LINES				9
	ion line equations, wave solution, wave vs. circuits, initial wave, delay tim				
-	e, wave propagation, reflection, and bounce diagrams Reactive termination				
	s of micro strip and strip line cross-sections, per unit length parameters, PC				
	Cu thicknesses, cross-sectional analysis tools, Zo and Td equations for Reflection and terminations for logic gates, fan-out, logic switching, input i				
	on-line section, reflection coefficient, skin-effect, dispersion.	mpe	uain		10 a
UNIT II	MULTI-CONDUCTOR TRANSMISSION LINES AND CROSS-TA	I K			9
	ductor transmission-lines, coupling physics, per unit length parameters, N			far-	-
	minimizing cross-talk (stripline and microstrip) Differential signalli				
	circuits ,S-parameters, Lossy and Lossless models.	0,			
UNIT III					9
Non-ideal	signal return paths - gaps, BGA fields, via transitions, Parasitic inductance	and	capa	acita	nce,
Transmiss	ion line losses – Rs, tan δ , routing parasitic, Common-mode current, c	liffe	renti	al-m	ode
	Connectors.				1
UNIT IV					9
	, DC power bus design , layer stack up, SMT decoupling , Logic				
	on, and system power delivery, Logic families and speed Package typ				
	BIS models, Bit streams, PRBS and filtering functions of link-path co	mpc	onen	ts,	Eye
UNIT V	jitter , inter-symbol interference Bit-error rate ,Timing analysis. CLOCK DISTRIBUTION AND CLOCK OSCILLATORS				9
	argin, Clock slew, low impedance drivers, terminations, Delay Adjustments	car	celiı	ıσ	
-	apacitance, Clock jitter, Applications of Clock Oscillator.	, cui		15	
purusiti t					
COUDCE	TOTA	L:4	5 PE	RIC	DS
	OUTCOMES:				
CO1:	d of the course, the students will be able to: Define the sources affecting the speed of digital circuits.				
CO1: CO2:	Identify methods to improve the signal transmission characteristics.				
CO2:	Explain the non-ideal effects of signal.				
CO3:	Compute the power consideration for the system.				
CO5:	Estimate the clock distribution.				
REFERE					
1.	H. W. Johnson and M. Graham, High-Speed Digital Design: A Handbook	of H	Black	x Ma	gic.
	Prentice Hall, 1993.				0,
2.	Douglas Brooks, Signal Integrity Issues and Printed Circuit Board Desig	gn, I	Prent	ice	Hall
	Modern Semiconductor Design,2012.				
3.	S. Hall, G. Hall, and J. McCall, High-Speed Digital System Design:	Αŀ	Iand	book	c of
	Interconnect Theory and Design Practices, Wiley-Interscience, 2000.				
4.	Eric Bogatin, Signal Integrity – Simplified, Prentice Hall PTR, 2003.				
5.	Stephen C. Thierauf, High-Speed Circuit Board Signal Integrity, Artech hou	ise I	nc.,2	004.	
TOOLS I	REQUIRED				
1.	SPICE, source - http://www-cad.eecs.berkeley.edu/Software/software.html				
2.	HSPICE from synopsis, www.synopsys.com/products/ mixedsignal/hspice/	hspi	ce.h	tml	
3.	SPECCTRAQUEST from Cadence, http://www.specctraquest.com	۲			
5.	ST LOOTAT QUEST HOM Cadence, http://www.speechaquesi.com				

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	1	1	2	2	1			
CO2	2	1	1	2	2	1			
CO3	2	1	1	2	2	1			
CO4	2	1	1	2	2	1			
CO5	2	1	1	2	2	1			
СО	2	1	1	2	2	1			

Unit No. and Title	Total 2	Total 16		Cognitive	e Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I: SIGNAL	2	1either	2(2)-CO1	1either or	-	-
PROPAGATION ON		or		(16)-CO1		
TRANSMISSION						
LINES						
Unit-II: MULTI-	2	1 either	2(2)-CO2	1either or	-	-
CONDUCTOR		or		(16)-CO2		
TRANSMISSION						
LINES AND CROSS-						
TALK						
Unit-III: NON-IDEAL	2	1 either	1(2)-CO3	1(2)-CO3	-	-
EFFECTS		or		1either or		
				(16)-CO3		
Unit-IV: POWER	2	1 either	1(2)-CO4	1(2)-CO4	1either	-
CONSIDERATIONS		or			or	
AND SYSTEM					(16)-	
DESIGN					CO4	
Unit-V: CLOCK	2	1either	1(2)-CO5	1(2)-CO5	1either	_
DISTRIBUTION AND		or	-(_)	-(-)	or	
CLOCK					(16)-	
OSCILLATORS					CO5	
Total Qns. Title:	10	5either	7(2)	3(2)	2 either	-
AE22322 SIGNAL		or		3 either or	or	
INTEGRITY FOR				(16)	(16)	
HIGH SPEED						
DESIGN						
Total Marks	20	80	14	54	32	-
Weightage	20%	80%	14%	54%	32%	-

AE22323	CONSUMER ELECTRONICS	L	Τ	Р	С
		3	0	0	3
COURSE	C OBJECTIVES:				
• To	acquaint the students with the construction, theory and operation of th	e bas	ic el	ectro	nic
de	vices and circuits.				
• To	know about the working principle of entertainment devices.				
• To	introduce the concept of Sensors and voice controls.				
• To	provide the knowledge on Smart home devices.				
• To	gain knowledge on current communication technology.				
UNIT I	CONSUMER ELECTRONICS FUNDAMENTALS				9
Semicond ADC, DA	f Electronic Devices- Vacuum Tubes, Transistors, Integrated Circuit uctor Devices, Diodes, Rectifiers, Transistors, Logic Gates, Combin C and Microprocessors, Microcontrollers in consumer electronics, Ene Building Perspective. Wiring and Safety instructions.	natio	nal (Circu	its,
					-
receiver,	stems: Construction and working principle of: Microphone, Loud spear stereo, Home theatre. Display systems: CRT, LCD, LED and Graphic DVD and Blue RAY. Recording Systems: Digital Cameras and Camcorde	s dis			
UNIT III					9
	gy involved in Smart home, Home Virtual Assistants- Alexa and Goo	-			
-	Systems - Intruder Detection, Automated blinds, Motion Sensors, The nsors, PIR, IR and Water Level Sensors.	rmal	Sens	sors a	ind
UNIT IV	HOME APPLIANCES				9
Home Er Washing	hablement Systems: RFID Home, Lighting control, Automatic Cle Machines, Kitchen Electronics- Microwave, Dishwasher, Induction fors, Smart alarms, Smart toilet, Smart floor, Smart locks.				,
UNIT V	INTRODUCTION TO SMART OS AND COMMUNICATION				9
security,	on to Smart OS- Android and iOS. Video Conferencing Systems- Web/ Internet Enabled Systems, Wi-Fi, IoT, Li-Fi, GPS and Tracking S es, Fax Machines, PDAs- Tablets, Smart Phones and Smart Watches.				
	ΤΟΤΑ	L: 45	5 PE	RIO	DS
	COUTCOMES:				
	d of the course, the students will be able to:	al c			
CO1: CO2:	Infer the various electronic components used for designing electronic ga Demonstrate the concepts behind the entertainment gadgets.	agets	•		
CO2: CO3:	Identify the supporting sensors used for automation.				
CO3:	Interpret various home appliances.				
CO4:	Apply advance techniques, skills and modern tools on home application	s			
REFERE					
1	Thomas L Floyd "Electronic Devices" 10th Edition Pearson Education A	Asia 2	2018		
2	Nick vandome, Smart homes in easy steps, - Master smart technolog 2018.				me
3	Jordan Frith, "Smartphones as Locative Media ", Wiley. 2014.				
4	Dennis C Brewer, "Home Automation", Que Publishing 2013.			-	
5	Thomas M. Coughlin, "Digital Storage in Consumer Electronics", Elsev 2012.	vier a	nd N	lewn	ess

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
C01	2	1	2	2	2	2			
CO2	2	1	2	2	2	2			
CO3	2	1	2	2	2	2			
CO4	2	1	2	2	2	2			
CO5	2	1	2	2	2	2			
СО	2	1	2	2	2	2			

Unit No. and Title	Total 2	Total 16		Cognitive	e Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I: CONSUMER	2	1either	2(2)-CO1	1either or	-	-
ELECTRONICS		or		(16)-CO1		
FUNDAMENTALS						
Unit-II:	2	1either	2(2)-CO2	1either or	-	-
ENTERTAINMENT		or		(16)-CO2		
ELECTRONICS						
Unit-III: SMART	2	1 either	1(2)-CO3	1(2)-CO3	-	-
HOME - SENSORS		or		1either or		
				(16)-CO3		
Unit-IV: HOME	2	1either	1(2)-CO4	1(2)-CO4	-	-
APPLIANCES		or		1either or		
				(16)-CO4		
Unit-V:	2	1either	1(2)-CO5	1(2)-CO5	1either or	-
INTRODUCTION		or			(16)-CO5	
TO SMART OS						
AND						
COMMUNICATION						
Total Qns.	10	5either	7(2)	3(2)	1either or	-
Title:AE22323		or		4 either or	(16)	
CONSUMER				(16)		
ELECTRONICS						
Total Marks	20	80	14	70	16	-
Weightage	20%	80%	14%	70%	16%	-

AE22324	ADVANCED MICROPROCESSORS AND MICROCONTROLLERS ARCHITECTURE	L	Т	Р	С
		3	0	0	3
COURSE C	BJECTIVES:				
• To e	xpose the students to the fundamentals of microprocessor architecture	÷.			
• To e:	xplore the high performance features in CISC architecture.				
To fa	miliarize the high performance features in RISC architecture.				

• T	o introduce the basic features in Motorola microcontrollers.	
• T	o enable the students to understand PIC Microcontroller.	
UNIT I	MICROPROCESSOR ARCHITECTURE	9
Instructio	on Set - Addressing modes - Memory hierarchy -register file - Cache - Virtual m	emory
and pagin	ng – Segmentation- pipelining –the instruction pipeline – pipeline hazards–instruction	n leve
parallelis	m – reduced instruction set –Computer principles – RISC versus CISC.	
UNIT II		9
	chitecture- Bus Operations – Pipelining – Brach predication – floating point unit- Ope	
	Paging – Multitasking – Exception and Interrupts – Instruction set – addressing me	odes -
	ming the Pentium processor.	
UNIT II		9
0	tion of CPU – Bus architecture –Memory management unit - ARM instruction set- T	Thum
	on set- addressing modes – Programming the ARM processor.	
UNIT IV		9
	P430 Architecture- CPU Registers - Instruction Set, On-Chip Peripherals - MSP43	
	ment Tools, ADC - PWM - UART - Timer Interrupts - System design us	sing
	Microcontroller.	
UNIT V		9
CPU Arc	hitecture – Instruction set – interrupts- Timers- I2C Interfacing –UART- A/D Conver	
COUDO	TOTAL: 45 PER	
	E OUTCOMES:	
	nd of the course, the students will be able to:	
<u>CO1:</u>	Explain the fundamentals of microprocessor architecture.	
<u>CO2:</u>	Identify the high performance features in CISC architecture.	
<u>CO3:</u>	Choose the high performance features in RISC architecture.	
CO4:	Organize the basic features in Motorola microcontrollers.	
CO5:	Develope PIC Microcontroller for Interfacing.	
REFER		
1.	Daniel Tabak, "Advanced Microprocessors", McGraw Hill.Inc., 1995	
2.	Parimala Devi, P. Jayachandar P and Brindha," Advanced Microprocessor	s and
2	Microcontrollers", Laxmi Publications Pvt Ltd.,2019.	: 41a 41a
3.	Ramesh Gaonkar, "Microprocessor Architecture, Programming and Applications w. 8085",6 th Edition,2013.	iin in
4.	Steve Heath," Microprocessor Architectures and Systems: RISC, CISC and	יספת
4.	Elsevier Science, 2014.	DSI
5.	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.	
6.	Joseph Yiu ,"System-on-Chip Design with Arm® Cortex®-M Processors", arm Edu	catio
0.	Media, 2019.	
7.	Steve Furber, "ARM System –On –Chip architecture", Addision Wesley, 2000.	
8.	Gene .H.Miller ," Micro Computer Engineering ", Pearson Education , 2003.	
9.	John .B.Peatman , "Design with PIC Microcontroller", Prentice hall, 1997.	
10.	John H.Davis , "MSP 430 Micro controller basics", Eelsevier, 2008.	
11.	James L.Antonakos, "An Introduction to the Intel family of Microprocessors", Po	earso
11.	Education 1999.	cu 301
12.	Barry.B.Breg," The Intel Microprocessors Architecture, Programming and Interfac	ving "
1/		

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	2	2	2	1			
CO2	2	-	2	2	2	1			
CO3	2	-	2	2	2	1			
CO4	2	-	2	2	2	1			
CO5	2	-	2	2	2	1			
СО	2	-	2	2	2	1			

Unit No. and Title	Total 2	Total 16		Cognitive	e Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I:	2	1either	2(2)-CO1	1either or	-	-
MICROPROCESSOR		or		(16)-CO1		
ARCHITECTURE						
Unit-II:HIGH	2	1either	2(2)-CO2	1 either or	-	-
PERFORMANCE CISC		or		(16)-CO2		
ARCHITECTURE –						
PENTIUM						
Unit-III: HIGH	2	1 either	1(2)-CO3	1(2)-CO3	-1either	-
PERFORMANCE RISC		or			or	
ARCHITECTURE –					(16)-	
ARM					CO3	
Unit-IV: MSP430 16 -	2	1 either	1(2)-CO4	1(2)-CO4		-
BIT		or		1either or		
MICROCONTROLLER				(16)-CO4		
Unit-V: PIC	2	1 either	1(2)-CO5	1(2)-CO5	1 either	-
MICROCONTROLLER		or			or (16)-	
					CO5	
Total Qns. Title	10	5either	7(2)	3(2)	2 either	-
ADVANCED		or		3 either or	or	
MICROPROCESSORS&				(16)	(16)	
MICROCONTROLLERS						
ARCHITECTURE						
Total Marks	20	80	14	54	32	-
Weightage	20%	80%	14%	54%	32%	-

AE22325	AUTOMOTIVE ELECTRONICS	L	Т	Р	С
		3	0	0	3
COURSE O	DBJECTIVES:				
• To ex system	plain the principle of electronic management system and different sensense.	ors u	sed i	in th	e
	know the concepts and develop basic skills necessary to diagnos ronic problems.	se a	utom	notiv	e
• To k	know Starting, and charging, lighting systems, advanced automot	ive	elec	etrica	ıl

•	systems.	
	To include electronic accessories and basic computer control.	
•	To explore practically about the components present in an Automotive electric electronics system.	al and
UNII		9
	onents for electronic engine management system, open and closed loop control strategi	-
contro	Look up tables, introduction to modern control strategies like Fuzzy logic and a Switches, active resistors, Transistors, Current mirrors/amplifiers, Voltage and lices, Comparator, Multiplier. Amplifier, filters, A/D and D/A converters.	daptive
UNII		9
Film	ensors, micro-scale sensors, Particle measuring systems, Vibration Sensors, SMART s	ensors
	ne Vision, Multi-sensor systems Applications of Sensors: Applications and case stu	
	s in Automobile Engineering, Aeronautics, Machine tools and Manufacturing processes	
UNIT		9
	tion of Direct Current- Shunt Generator Characteristics- Armature Reaction- Third	-
	tion- Cutout. Voltage and Current Regulators- Compensated Voltage Regulator Alter	
U	ble and Constructional Aspects and Bridge Rectifiers- New Developments.	
UNII		9
	nission control - Cruise control – Braking control – Traction control –Suspension c	
	ing control – Stability control – Integrated engine control.	onuoi
UNII		9
	t Trends in Automotive Electronic Engine Management System- Types of	-
	nents- Onboard Diagnostic System- Security - Warning System infotainment and Telem tudy: Automotive stepper motor.	acres.
ana	TOTAL: 45 PEI	RIODS
	ESTED ACTIVITIES:	
1. T s	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems.	roller
1. T s 2. S	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont	roller
1. T s 2. S c	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect	roller
1. T s 2. S c 3. S	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect ntrol.	roller
1. T s 2. S c 3. S COU	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect ntrol. udy of Development of Embedded Systems projects. ESE OUTCOMES:	roller
1. T s 2. S c 3. S COU	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect ntrol. udy of Development of Embedded Systems projects. ESE OUTCOMES: end of the course, the students will be able to:	roller
1. T s 2. S c 3. S COU At the	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect ntrol. udy of Development of Embedded Systems projects. ESE OUTCOMES: end of the course, the students will be able to: : Explain the fundamentals of electronic engine management system.	roller
1. T s 2. S c 3. S COU At the CO CO	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect ntrol. udy of Development of Embedded Systems projects. ESE OUTCOMES: end of the course, the students will be able to: Explain the fundamentals of electronic engine management system. Illustrate the functions of various modern sensors in engine management systems.	roller
1. T s 2. S c 3. S COU At th CO CO CO	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect ntrol. udy of Development of Embedded Systems projects. ESE OUTCOMES: end of the course, the students will be able to: Explain the fundamentals of electronic engine management system. Illustrate the functions of various modern sensors in engine management systems. Demonstrate charging system and advanced automotive electrical systems.	roller
1. T s 2. S COU At th CO CO CO CO	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect ntrol. udy of Development of Embedded Systems projects. ESE OUTCOMES: end of the course, the students will be able to: : Explain the fundamentals of electronic engine management system. : Illustrate the functions of various modern sensors in engine management systems. : Demonstrate charging system and advanced automotive electrical systems. : Summarize the automotive transmission control systems.	roller
1. T s c 2. S COU At th CO CO CO CO CO	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect ntrol. udy of Development of Embedded Systems projects. ESE OUTCOMES: end of the course, the students will be able to: : Explain the fundamentals of electronic engine management system. : Illustrate the functions of various modern sensors in engine management systems. : Demonstrate charging system and advanced automotive electrical systems. : Summarize the automotive transmission control systems. : Explain the components present in an Automotive electronics system.	roller
1. T s 2. S c 3. S COU At th CO CO CO CO CO CO CO CO CO CO CO	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect ntrol. udy of Development of Embedded Systems projects. ESE OUTCOMES: end of the course, the students will be able to: : Explain the fundamentals of electronic engine management system. : Illustrate the functions of various modern sensors in engine management systems. : Demonstrate charging system and advanced automotive electrical systems. : Summarize the automotive transmission control systems. : Explain the components present in an Automotive electronics system. RENCES:	ronic
1. T s c 2. S COU At th CO CO CO CO CO CO CO CO CO CO CO CO CO	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect ntrol. udy of Development of Embedded Systems projects. ESE OUTCOMES: end of the course, the students will be able to: Explain the fundamentals of electronic engine management system. Illustrate the functions of various modern sensors in engine management systems. Demonstrate charging system and advanced automotive electrical systems. Summarize the automotive transmission control systems. Explain the components present in an Automotive electronics system. RENCES: Allan Bonnick, "Automotive Computer Controlled Systems", Butterworth- Heinemann ndian Edition, 2011.	roller ronic
1. T s c 2. S c 3. S COU At th CO CO CO CO CO CO CO CO CO CO CO CO CO	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect ntrol. udy of Development of Embedded Systems projects. ESE OUTCOMES: end of the course, the students will be able to: : Explain the fundamentals of electronic engine management system. : Illustrate the functions of various modern sensors in engine management systems. : Demonstrate charging system and advanced automotive electrical systems. : Summarize the automotive transmission control systems. : Explain the components present in an Automotive electronics system. RENCES: Allan Bonnick, "Automotive Computer Controlled Systems", Butterworth- Heinemann ndian Edition, 2011. A. Galip Ulsoy, Huei Peng, Melih Cakmakci, "Automative Control Systems", Can Jniversity Press, 2012.	roller ronic
1. T s 2. S c 3. S COU At th CO CO CO CO CO CO CO CO S CO CO S CO CO S CO S CO S CO S S S S	ESTED ACTIVITIES: sting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect ntrol. udy of Development of Embedded Systems projects. SE OUTCOMES: end of the course, the students will be able to: : Explain the fundamentals of electronic engine management system. : Illustrate the functions of various modern sensors in engine management systems. : Demonstrate charging system and advanced automotive electrical systems. : Summarize the automotive transmission control systems. : Explain the components present in an Automotive electronics system. RENCES: Mlan Bonnick, "Automotive Computer Controlled Systems", Butterworth- Heinemann ndian Edition, 2011. A. Galip Ulsoy, Huei Peng, Melih Cakmakci, "Automative Control Systems", Can Jniversity Press, 2012. Akkadiusz Gola, "Design and Management of Manufacturing Systems, MDPI, 2021.	roller ronic
1. T s 2. S c 3. S COU At th CO CO CO CO CO CO CO CO S CO CO S CO CO S CO S CO S CO S S S S	ESTED ACTIVITIES: esting of battery, starting systems, charging systems, ignition systems and body cont stems. udy of various sensors and actuators used in two wheelers and four wheelers for elect ntrol. udy of Development of Embedded Systems projects. ESE OUTCOMES: end of the course, the students will be able to: : Explain the fundamentals of electronic engine management system. : Illustrate the functions of various modern sensors in engine management systems. : Demonstrate charging system and advanced automotive electrical systems. : Summarize the automotive transmission control systems. : Explain the components present in an Automotive electronics system. RENCES: Allan Bonnick, "Automotive Computer Controlled Systems", Butterworth- Heinemann ndian Edition, 2011. A. Galip Ulsoy, Huei Peng, Melih Cakmakci, "Automative Control Systems", Can Jniversity Press, 2012.	roller ronic , Elsev

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
C01	2	-	2	1	-	1			
CO2	2	-	2	1	-	1			
CO3	2	-	2	1	-	1			
CO4	2	-	2	1	-	1			
CO5	2	-	2	1	-	1			
СО	2	-	2	1	-	1			

Table of Specification for End Semester Question Paper

Unit No. and Title	Total 2	Total 16		Cogniti	ve Level	
	Marks	Marks	Remember	Understand	Apply	Analyse(An)
	Qus.	Qus.	(Kn)	(Un)	(Ap)	Evaluate(Ev)
Unit-I:	2	1either	2(2)-CO1	1either or	_	-
FUNDAMENTALS		or		(16)-CO1		
Unit-II:	2	1either	2(2)-CO2	1either or	-	-
MODERN		or		(16)-CO2		
SENSORS						
Unit-III:	2	1either	1(2)-CO3	1(2)-CO3	-	-
CHARGING		or		1either or		
SYSTEM				(16)-CO3		
Unit-IV:	2	1either	1(2)-CO4	1(2)-CO4	-	-
AUTOMOTIVE		or				
TRANSMISSION				1 either or		
CONTROL				(16)-CO4		
SYSTEMS						
Unit-V:	2	1either	2(2)-CO5	1either or	-	-
ELECTRONICS		or		(16)-CO5		
SYSTEMS						
Total Qns.	10	5either	8(2)	2(2)	-	-
Title:AE22325		or		5 either or		
AUTOMOTIVE				(16)		
ELECTRONICS						
Total Marks	20	80	16	84		-
Weightage	20%	80%	14%	84%		-

AUDIT COURSES

AC22101	ENGLISH FOR RESEARCH PAPER WRITING	L	Т	Р	С				
		2	0	0	0				
COURSE (COURSE OBJECTIVES:								
Teac	h how to improve writing skills and level of readability								
• Tell	about what to write in each section								
• Sum	marize the skills needed when writing a Title								
• Infer	the skills needed when writing the Conclusion								
 Ensu 	re the quality of paper at very first-time submission								
UNIT I	INTRODUCTION TO RESEARCH PAPER WRITING				6				
Planning an	Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and								

Cont	anaaa E	Daina Consister and Domoving Dodundanov, Avaiding Ambiguity and Vaguanosa	·······
	IT II	Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness. PRESENTATION SKILLS	6
		Vho Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphra	-
		sm, Sections of a Paper, Abstracts, Introduction.	ising
	-	TITLE WRITING SKILLS	6
			6
		re needed when writing a Title, key skills are needed when writing an Abstract,	
		eeded when writing an Introduction, skills needed when writing a Review of	the
		Aethods, Results, Discussion, Conclusions, The Final Check.	
	IT IV	RESULT WRITING SKILLS	6
		eeded when writing the Methods, skills needed when writing the Results, skills	s are
		n writing the Discussion, skills are needed when writing the Conclusions.	
		VERIFICATION SKILLS	6
	-	ses, checking Plagiarism, how to ensure paper is as good as it could possibly be	e the
first-	time su	ibmission.	
		TOTAL: 30 PERIO	ODS
COU	URSE C	DUTCOMES:	
Upo	n compl	etion of the course, the students will/ will be able to	
Ć0		derstand that how to improve your writing skills and level of readability	
CO	2: Le	arn about what to write in each section	
CO	3: Un	derstand the skills needed when writing a title	
CO	4: Un	derstand the skills needed when writing the conclusion	
CO	5: En	sure the good quality of paper at very first-time submission	
REF	EREN		
1		Wallwork, English for Writing Research Papers, Springer New York Dordn berg London, 2011.	echt
2	Goldb	ort R Writing for Science, Yale University Press (available on Google Books) 20	06.
3		nan N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's b	

Course	Programme Outcomes							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	-	2	-	1	-	-		
CO2	-	2	-	1	-	-		
CO3	-	2	-	1	-	-		
CO4	-	2	-	1	-	-		
CO5	-	2	-	1	-	-		
СО	-	2	-	1	-	-		

AC22102	CONSTITUTION OF INDIA	L	Т	Р	С
		2	0	0	0
COURSE (DBJECTIVES:				•
	erstand the premises informing the twin themes of liberty and s perspective	freed	om fr	om a	civil
cons	address the growth of Indian opinion regarding modern titutional role and entitlement to civil and economic rights as w on hood in the early years of Indian nationalism				

л Т	To address the role of socialism in India after the commencement of the Delek	ovil-
	To address the role of socialism in India after the commencement of the Bolsh Revolutionin1917 and its impact on the initial drafting of the Indian Constitution	CVIK
UNIT		5
	Drafting Committee, (Composition & Working).	
UNIT I		5
	e, Salient Features	U
UNIT I		5
Freedom	ental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right of Religion, Cultural and Educational Rights, Right to Constitutional Reme e Principles of State Policy, Fundamental Duties.	ht to
UNIT I		5
	ent, Composition, Qualifications and Disqualifications, Powers and Functions, Execu	-
	t, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Jud	
	ations, Powers and Functions.	•
UNIT	V LOCAL ADMINISTRATION	5
Organiza officials, UNIT V		inted
	Commission: Role and Functioning. Chief Election Commissioner and Election Sciences - Institute and Bodies for the welfare of SC/ST/OBC and women. TOTAL: 30 PERIO	
COURS	E OUTCOMES:	
	mpletion of the course, the students will/ will be able to	
CO1 :	Discuss the growth of the demand for civil rights in India for the bulk of Indians be the arrival of Gandhi in Indian politics	efore
CO2:	Discuss the intellectual origins of the framework of argument that informed conceptualization of social reforms leading to revolution in India	the
CO3:	Discuss the circumstances surrounding the foundation of the Congress Soc Party[CSP] under the leadership of Jawaharlal Nehru and the eventual failure of proposal of direct elections through adult suffrage in the Indian Constitution	
CO4:	Discuss the passage of the Hindu Code Bill of 1956.	
	ENCES:	
1 Th	e Constitution of India, 1950 (Bare Act), Government Publication.	
	.S.N.Busi, Dr.B. R.Ambedkar framing of Indian Constitution, 1st Edition, 2015.	
	P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis,2014.	
	D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.	
	2. Dust, introduction to the Constitution of India, Lexis (Veris, 2015.	

Course	Programme Outcomes								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	2	1	-	-	-			
CO2	-	2	1	-	-	-			
CO3	-	2	1	-	-	-			
CO4	-	2	1	-	-	-			
CO5	-	2	1	-	-	-			
СО	-	2	1	-	-	-			

AC22201	DISASTER MANAGEMENT	L	Т	P	C
		2	0	0	0
COURSE	OBJECTIVES:				
• Su	mmarize basics of disaster				
	plain a critical understanding of key concepts in disaster	risk	redu	ction	an
	nanitarian response				
	strate disaster risk reduction and humanitarian response polic	ey and	d pra	ctice	fror
	ltiple perspectives	1	. 1	1	
	scribe an understanding of standards of humanitarian response ar	nd pra	ictical	relev	anc
	specific types of disasters and conflict situations				
UNIT I	velop the strengths and weaknesses of disaster management appro INTRODUCTION	Jaches	8		6
	Definition, Factors and Significance; Difference between Hazard	And T	Dicacto	ər• Na	6 turs
	ade Disasters: Difference, Nature, Types and Magnitude.		15250	. , 1 1 a	luic
UNIT II					6
	Damage, Loss of Human and Animal Life, Destruction Of	Ecos	systen	n. Na	, ,
	Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Dro		•		
Landslides	And Avalanches, Man-made disaster: Nuclear Reactor M	Meltdo	own,	Indu	stria
	Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, Wa	ar Ano	d Con	flicts.	
	DISASTER PRONE AREAS IN INDIA				6
	Seismic Zones; Areas Prone To Floods and Droughts, Landslid				
Areas Pro	ne To Cyclonic and Coastal Hazards with Special Reference	$\mathbf{v}' \mathbf{\Gamma} \mathbf{o}$			
		5 10	Tsuna	amı; I	Pos
Disaster D	iseases and Epidemics.	. 10	Tsuna	amı; I	
Disaster D UNIT IV	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT				6
Disaster D UNIT IV Preparedne	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard	; Eva	luatio	n of I	6 Risk
Disaster D UNIT IV Preparedne Applicatio	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agen	; Eva	luatio	n of I	6 Risk
Disaster D UNIT IV Preparedno Applicatio Governme	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agen ntal and Community Preparedness.	; Eva	luatio	n of I	6 Risk oorts
Disaster D UNIT IV Preparedna Applicatio Governme UNIT V	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agen ntal and Community Preparedness. RISK ASSESSMENT	; Eva ncies,	luatio Medi	n of I a Rep	6 Risk oorts 6
Disaster D UNIT IV Preparedno Applicatio Governme UNIT V Disaster R	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agental and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a	; Eva ncies, and N	luatio Medi ationa	n of I a Rep al Dis	6 Risk oorts 6 aste
Disaster D UNIT IV Preparedno Applicatio Governme UNIT V Disaster R Risk Situa	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agen ntal and Community Preparedness. RISK ASSESSMENT	; Eva ncies, und N Risk	luatio Medi ationa	n of I a Rep al Dis	6 Risk oorts 6 aste
Disaster D UNIT IV Preparedno Applicatio Governme UNIT V Disaster R Risk Situa	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agental and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in People's Participation in Risk Assessment. Strategies for Survival	; Eva ncies, und N Risk	luatio Medi ationa Asses	n of I a Rep al Dis	6 Risk oorts 6 aste
Disaster D UNIT IV Preparedno Applicatio Governme UNIT V Disaster R Risk Situa Warning, 1	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agental and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in People's Participation in Risk Assessment. Strategies for Survival	; Eva ncies, und N Risk	luatio Medi ationa Asses	n of I a Rep al Dis sment	6 Risk oorts 6 aste
Disaster D UNIT IV Preparedna Applicatio Governme UNIT V Disaster R Risk Situa Warning, J	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agental and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in Element's Participation in Risk Assessment. Strategies for Survival	; Eva ncies, und N Risk	luatio Medi ationa Asses	n of I a Rep al Dis sment	6 Risk oorts 6 aste
Disaster D UNIT IV Preparedne Applicatio Governme UNIT V Disaster R Risk Situa Warning, 1 COURSE Upon com CO1: S	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agental and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in People's Participation in Risk Assessment. Strategies for Survival TC OUTCOMES: pletion of the course, the students will/ will be able to	; Eva ncies, und N Risk	luatio Medi ationa Asses	n of I a Rep al Dis sment	6 Risk oorts 6 aste t an OD
Disaster D UNIT IV Preparedna Applicatio Governme UNIT V Disaster R Risk Situa Warning, I COURSE Upon com CO1: S	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agen ntal and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in P eople's Participation in Risk Assessment. Strategies for Survival TC OUTCOMES: pletion of the course, the students will/ will be able to Summarize basics of disaster Explain a critical understanding of key concepts in disaster	; Eva ncies, und N Risk	luatio Medi ationa Asses	n of I a Rep al Dis sment	6 Risk oorts 6 aste t an OD
Disaster D UNIT IV Preparedne Applicatio Governme UNIT V Disaster R Risk Situa Warning, I COURSE Upon com CO1: S CO2: R	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agen ntal and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in 1 People's Participation in Risk Assessment. Strategies for Survival TO OUTCOMES: pletion of the course, the students will/ will be able to isummarize basics of disaster Explain a critical understanding of key concepts in disaster umanitarian response	; Eva ncies, und N Risk DTAL	luatio Medi ationa Asses .: 45 I	n of I a Rep al Dis sment PERIC	6 Risk oorts aste t an OD
Disaster D UNIT IV Preparedna Applicatio Governme UNIT V Disaster R Risk Situa Warning, I COURSE Upon com CO1: S CO2: I P	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agen ntal and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in P eople's Participation in Risk Assessment. Strategies for Survival TC OUTCOMES: pletion of the course, the students will/ will be able to Explain a critical understanding of key concepts in disaster umanitarian response Ilustrate disaster risk reduction and humanitarian response policy	; Eva ncies, und N Risk DTAL	luatio Medi ationa Asses .: 45 I	n of I a Rep al Dis sment PERIC	6 Risk oorts aste t an OD
Disaster D UNIT IV Preparedna Applicatio Governme UNIT V Disaster R Risk Situa Warning, I COURSE Upon com CO1: S CO2: H P CO3: I r	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agental and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in People's Participation in Risk Assessment. Strategies for Survival TC OUTCOMES: pletion of the course, the students will/ will be able to Summarize basics of disaster Explain a critical understanding of key concepts in disaster umanitarian response Illustrate disaster risk reduction and humanitarian response polionultiple perspectives	; Eva ncies, und N Risk DTAL	luatio Medi ationa Asses .: 45 I redu d pra	n of I a Rep al Dis sment PERIC	6 Risk oorts aaste t an OD
Disaster D UNIT IV Preparedne Applicatio Governme UNIT V Disaster R Risk Situa Warning, I COURSE Upon com CO1: S CO2: I P CO3: I r	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agental and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in Deople's Participation in Risk Assessment. Strategies for Survival TC OUTCOMES: pletion of the course, the students will/ will be able to Summarize basics of disaster Explain a critical understanding of key concepts in disaster umanitarian response Illustrate disaster risk reduction and humanitarian response police Describe an understanding of standards of humanitarian response	; Eva ncies, und N Risk DTAL	luatio Medi ationa Asses .: 45 I redu d pra	n of I a Rep al Dis sment PERIC	6 Risk oorts aaste t an OD
Disaster D UNIT IV Preparedna Applicatio Governme UNIT V Disaster R Risk Situa Warning, J COURSE Upon com CO1: S CO2: I P CO3: I r CO4: I	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Ager ntal and Community Preparedness. RISK ASSESSMENT tisk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in People's Participation in Risk Assessment. Strategies for Survival TC OUTCOMES: pletion of the course, the students will/ will be able to Summarize basics of disaster Explain a critical understanding of key concepts in disaster umanitarian response Illustrate disaster risk reduction and humanitarian response police Describe an understanding of standards of humanitarian response Describe an understanding of standards of humanitarian response	; Eva ncies, und N Risk DTAL	luatio Medi ationa Asses : 45 I redu d pra-	n of I a Rep al Dis sment PERIC	6 Risk oorts aaste t an OD
Disaster D UNIT IV Preparedna Application Governme UNIT V Disaster R Risk Situan Warning, D COURSE Upon com CO1: S CO2: I CO3: I CO4: I r CO5: I	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agen ntal and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in D cople's Participation in Risk Assessment. Strategies for Survival COUTCOMES: pletion of the course, the students will/ will be able to cummarize basics of disaster Explain a critical understanding of key concepts in disaster umanitarian response llustrate disaster risk reduction and humanitarian response police pleton of humanitarian response llustrate disaster risk reduction and humanitarian response police llustrate disaster risk and weaknesses of disaster management app	; Eva ncies, und N Risk DTAL	luatio Medi ationa Asses : 45 I redu d pra-	n of I a Rep al Dis sment PERIC	6 Risk oorts aste t an OD
Disaster D UNIT IV Application Governme UNIT V Disaster R Risk Situa Warning, D COURSE Upon com CO1: S CO2: I REFERE	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agental and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in Deople's Participation in Risk Assessment. Strategies for Survival COUTCOMES: pletion of the course, the students will/ will be able to Summarize basics of disaster Explain a critical understanding of key concepts in disaster umanitarian response Illustrate disaster risk reduction and humanitarian response police Describe an understanding of standards of humanitarian response Develop the strengths and weaknesses of disaster management approximation	; Eva ncies, und N Risk DTAL DTAL	luatio Medi ationa Asses .: 45 I redu d pra-	n of I a Rep al Dis sment PERIC	6 Risk oorts aste aaste aan OD fror
Disaster D UNIT IV Preparedna Application Governme UNIT V Disaster R Risk Situan Warning, D COURSE Upon com CO1: S CO2: R r CO3: I REFERE 1 Goel	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agen ntal and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in D People's Participation in Risk Assessment. Strategies for Survival COUTCOMES: pletion of the course, the students will/ will be able to Cummarize basics of disaster Explain a critical understanding of key concepts in disaster umanitarian response Illustrate disaster risk reduction and humanitarian response polio nultiple perspectives Describe an understanding of standards of humanitarian response Pevelop the strengths and weaknesses of disaster management app NCES: S. L., Disaster Administration And Management Text And	; Eva ncies, und N Risk DTAL DTAL	luatio Medi ationa Asses .: 45 I redu d pra-	n of I a Rep al Dis sment PERIC	6 Risk oorts aste aaste aan OD fror
Disaster D UNIT IV Preparedna Application Governme UNIT V Disaster R Risk Situan Warning, D COURSE Upon com CO1: S CO2: R CO3: R REFERE 1 Goel & Dee Nish	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agen ntal and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in D People's Participation in Risk Assessment. Strategies for Survival TC OUTCOMES: pletion of the course, the students will/ will be able to cummarize basics of disaster Explain a critical understanding of key concepts in disaster umanitarian response Illustrate disaster risk reduction and humanitarian response polic nultiple perspectives Describe an understanding of standards of humanitarian response Evelop the strengths and weaknesses of disaster management app NCES: S. L., Disaster Administration And Management Text And ep Publication Pvt. Ltd., New Delhi,2009.	; Eva ncies, and N Risk DTAL DTAL TAL	luatio Medi ationa Asses .: 45 I redu d pra- e and nes e Stuc	n of I a Rep al Dis sment PERIC Iction ctice	6 Risk oorts aste an OD fror ctica
Disaster D UNIT IV Preparedna Application Governme UNIT V Disaster R Risk Situa Warning, D COURSE Upon com CO1: S CO2: R P CO3: R CO5: I REFEREZ 1 Goel & De 2 Nish	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agen ntal and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in P eople's Participation in Risk Assessment. Strategies for Survival COUTCOMES: pletion of the course, the students will/ will be able to cummarize basics of disaster Explain a critical understanding of key concepts in disaster unanitarian response llustrate disaster risk reduction and humanitarian response polic nultiple perspectives Describe an understanding of standards of humanitarian res elevance in specific types of disasters and conflict situations Develop the strengths and weaknesses of disaster management app NCES: S. L., Disaster Administration And Management Text And ep Publication Pvt. Ltd., New Delhi,2009. itha Rai, Singh AK, "Disaster Management in India: Pers	; Eva ncies, and N Risk DTAL DTAL TAL	luatio Medi ationa Asses .: 45 I redu d pra- e and nes e Stuc	n of I a Rep al Dis sment PERIC Iction ctice	6 Risk oorts aste an OD an fror ctica
Disaster D UNIT IV Preparedna Application Governme UNIT V Disaster R Risk Situan Warning, D COURSE Upon com CO1: S CO2: R F CO3: I REFERE 1 Goel & De 2 Nish strate	iseases and Epidemics. DISASTER PREPAREDNESS AND MANAGEMENT ess: Monitoring Of Phenomena Triggering a Disaster or Hazard n of Remote Sensing, Data from Meteorological And Other Agen ntal and Community Preparedness. RISK ASSESSMENT isk: Concept and Elements, Disaster Risk Reduction, Global a tion. Techniques of Risk Assessment, Global Co-Operation in D People's Participation in Risk Assessment. Strategies for Survival TC OUTCOMES: pletion of the course, the students will/ will be able to cummarize basics of disaster Explain a critical understanding of key concepts in disaster umanitarian response Illustrate disaster risk reduction and humanitarian response polic nultiple perspectives Describe an understanding of standards of humanitarian response Evelop the strengths and weaknesses of disaster management app NCES: S. L., Disaster Administration And Management Text And ep Publication Pvt. Ltd., New Delhi,2009.	; Eva ncies, und N Risk DTAL DTAL OTAL Sponse Sponse Sponse Droach Case pectiv	luatio Medi ationa Asses .: 45 I redu d pra- e and nes e Stuc zes, i	n of I a Rep al Dis sment PERIC ctice : l prac dies",I ssues	6 Risk oorts aaste aaste an oD etica an

Course	Programme Outcomes					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	-	-	1	2
CO2	1	-	-	-	1	2
CO3	1	-	-	-	1	2
CO4	1	-	-	-	1	2
CO5	1	-	-	-	1	2
СО	1	-	-	-	1	2

AC22202	நற்றமிழ் இலக்கியம்	L	Т	Ρ	С
		2	0	0	0
UNIT I	சங்க இலக்கியம்				6
1. தமிழ	றின் துவக்க நூல் தொல்காப்பியம் - எழுத்து, சொல், பொழ	நள்			
2. அகற	நானூறு (82) - இயற்கை இன்னிசை அரங்கம்				
3. குறி	த் சிப் பாட்டின் மலர்க்காட்சி				
	ானூறு (95,195) - போரை நிறுத்திய ஔவையார்				
UNIT II	அறநெறித் தமிழ்				6
	றி வகுத்த திருவள்ளுவர்				
	அறம் வலியுறுத்தல், அன்புடைமை, ஒப்புரவறிதல், ஈகை,	புக	ழ்		
2. பிற அற	நூல்கள் - இலக்கிய மருந்து				
	- ஏலாதி, சிறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை				
	(தாய்மையை வலியுறுத்தும் நூல்)				
UNIT III	இரட்டைக் காப்பியங்கள்				6
	கியின் புரட்சி - சிலப்பதிகார வழக்குரை காதை				
2. சமூகசே	வை இலக்கியம் மணிமேகலை				
	- சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை				_
	அருள்நெறித் தமிழ்				6
1. சிறுபான	ராற்றுப்படை				
_ ·	- பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் ட		<u> </u>	-	
	கொடுத்தது, அதியமான் ஔவைக்கு நெல்லிக்கனி ெ	கா	(ቦ)	தை	<u>Б</u> Ј,
அரசர் பன்	•				
	ன - அன்னைக்குரிய புன்னை சிறப்பு				
	நிரம் (617, 618) - இயமம் நியமம் விதிகள் ––––––––––––––––––––––––––––––––––––				
	ாலையை நிறுவிய வள்ளலார்				
	யறு - சிறுவனே வள்ளலானான்				
	தாறு (4) – வண்டு ஊ (11) – சன்				
	ண (11) – நண்டு நாகை (11) – யானை, புறா				
கலதல	தாலைக் (TT) - யாலைன், புறா கை 50 (27) - பான் உடையல்லிய செய்தொள்				
UNIT V	ண 50 (27) – மான் ஆகியவை பற்றிய செய்திகள் க ீன சமிம் வைச்பெய ்			T	6
	நவீன தமிழ் இலக்கியம் .ரைநடைத் தமிழ்,				-
1.2	- தமிழின் முதல் புதினம்,				
	- தமிழின் முதல் புதலாம், - தமிழின் முதல் சிறுகதை,				
	- தப்பின் பேதல் சிறுகலத், - கட்டுரை இலக்கியம்,				
L					

- பயண இலக்கியம்,

- நாடகம்,

2.நாட்டு விடுதலை போராட்டமும் தமிழ் இலக்கியமும்,

3. சமுதாய விடுதலையும் தமிழ் இலக்கியமும்,

4.பெண் விடுதலையும் விளிம்பு நிலையினரின் மேம்பாட்டில் தமிழ் இலக்கியமும்,

5.அறிவியல் தமிழ்,

6.இணையத்தில் தமிழ்,

7.சுற்றுச்சூழல் மேம்பாட்டில் தமிழ் இலக்கியம்.

TOTAL: 30 PERIODS

REFE	REFERENCES:		
1	தமிழ் இணைய கல்விக்கழகம் (Tamil Virtual University)		
2	தமிழ் விக்கிப்பீடியா (Tamil Wikipedia)		
3	தர்மபுர ஆ தீ ன வெளியீடு		
4	வாழ்வியல் களஞ்சியம்		
5	தமிழ்கலைக் களஞ்சியம்		
	- தமிழ் வளர்ச்சித் துறை (thamilvalarchithurai.com)		
6	அறிவியல் களஞ்சியம்		
	- தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர்		