St. XAVIER'S CATHOLIC COLLEGE OF ENGINEERING Chunkankadai, Nagercoil – 629 003. AUTONOMOUS COLLEGE AFFILIATED TO ANNA UNIVERSITY ACADEMIC REGULATIONS 2022 M. E. STRUCTURAL ENGINEERING CURRICULAM CHOICE BASED CREDIT SYSTEM

INTRODUCTION

Inconsonance to the vision of our College,

An engineering graduate we form would be a person with optimal human development, i.e. physical, mental, emotional, social and spiritual spheres of personality.

He/she would be also a person mature in relationships, especially knowing how to treat everyone with respect, including persons of complementary gender with equality and gender sensitivity guided by clear and pro-social values.

He would be patriotic and would hold the Indian Constitution and all the precepts it outlays close to his heart and would have a secular spirit committed to safeguard and cherish the multicultural, multi-religious and multi-linguistic ethos of Indian Society.

Academically, he/she would be a graduate with a strong engineering foundation with proficient technical knowledge and skills. He would have enough exposure and experience into the ethos of relevant industry and be industry ready to construct a successful career for himself and for the benefit of the society.

He would have been well trained in research methodology and would have established himself as a researcher having taken up many research projects, with sound ethical standards and social relevance. He would be a person with a passion for technical innovations committed to lifelong learning and research.

He would be well prepared and confident to develop ingenuous solutions to the problems people face as an individual and as a team and work for the emancipation of our society with leadership and courage.

Structural engineering is a sub-discipline of civil engineering in which structural engineers are trained to design and construct the structural elements. The curriculum provides the students to gain knowledge and skills using modern engineering equipment and software tools by applying appropriate techniques. Graduates can identify, formulate and solve engineering problems in the domain of structural engineering field.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

I.	Gain knowledge and skills in structural engineering which will enable them to have a
	career and professional accomplishment in the public or private sector organizations.
II.	Become consultants in Structural Engineering and solve complex real life issues related
	to analysis, design and maintenance of structures under various environmental
	conditions.
III.	Contribute to the enhancement of knowledge in Structural Engineering by performing
	quality research in institutions of international repute or in Research organizations or
	Academia.
IV.	Practice their profession with good communication, leadership, ethics and social
	responsibility and formulate solutions that are technically sound, economically feasible,
	and socially acceptable.
V.	Graduates will function in multi-disciplinary teams and adapt to evolving technologies
	through life-long learning and innovation.

PROGRAMME OUTCOMES (POs)

PO#	Graduate Attribute
1	Independently carry out research/investigation and development work to solve practical
	problems.
2	Write and present substantial technical report/document.
3	Demonstrate a degree of mastery over the techniques in the area of Structural
	Engineering.
4	Analyze, design and create novel products and solutions for the real life problems in
	Structural Engineering.
5	Solve problems in Structural design using modern Engineering equipments and
	software tools by applying appropriate techniques.
6	Function effectively as a professional with ethical attitude, effective communication
	skills, team work skills, leadership skills and multi-disciplinary approach to solve
	Structural Engineering issues to broader social context.

PEO's – PO's MAPPING:

DEO				PO		
PEO	1	2	3	4	5	6
Ι	2	-	3	1	-	2
II	3	3	3	3	3	3
III	3	3	3	3	2	2
IV	1	2	2	1	1	3
V	3	2	3	3	3	3

PROGRAMME ARTICULATION MATRIX:

X 7	Correction.	Carrow Name				PO		
Year	Semester	Course Name	1	2	3	4	5	6
		MA22108	1	-	2	2	-	-
		SE22101	2	-	3	2	2	2
т	т	SE22102	2	-	2	2	-	2
Ι	Ι	RM22101	-	2	3	-	-	2
		SE22103	2	2	2	2	2	2
		SE22104	3	3	2	-	-	3
		SE22201	2	2	2	2	2	2
		SE22202	1	3	3	2	2	2
Ι	п	SE22203	3	2	2	3	2	3
1	II	SE22204	2	-	3	3	-	-
		SE22205	2	2	2	3	2	2
		RM22201	2	2	-	-	2	2

Sl.No.	Course	Course Title	Category	-	eriod : wee		Total contact	Credits
	Code			L	Т	Р	Period	
THEO	RY							
1	MA22108	Advanced Mathematical	FC	3	1	0	4	4
		Methods for Structural						
		Engineers						
2	SE22101	Structural Dynamics and	PCC	3	0	2	5	4
		Earthquake Engineering	FCC	3	0	2	5	4
3	SE22102	Theory of Elasticity and	PCC	3	1	0	4	4
		Plasticity	FCC	3	1	0	4	4
4		Professional Elective I	PEC	3	0	0	3	3
5	RM22101	Research Methodology	RMC	2	0	0	2	2
6		Audit Course I	AC	2	0	0	2	0
PRAC	ΓICAL							
7	SE22103	Advanced Structural	PCC	0	0	4	4	2
		Engineering Laboratory		0	U	4	4	Z
8	SE22104	Technical Seminar	EEC	0	0	2	2	1
			TOTAL	16	2	8	26	20

SEMESTER I

SEMESTER II

Sl.No.	Course	Course Title	Category		Periods per week		Total	Credits
31.1NO.	Code	Course The		L	T	P	contact Period	Creatis
THEO	RY			•				
1	SE22201	Advanced Steel Structures	PCC	3	1	0	4	4
2	SE22202	Finite Element Analysis of Structures	PCC	3	0	2	5	4
3	SE22203	Stability of Structures	PCC	3	0	0	3	3
4	SE22204	Advanced Concrete Structures	PCC	3	0	0	3	3
5		Professional Elective II	PEC	3	0	0	3	3
6		Professional Elective III	PEC	3	0	0	3	3
7		Audit Course II	AC	2	0	0	2	0
PRAC	ГICAL							
8	SE22205	Structural Design Laboratory	PCC	0	0	4	4	2
9	RM22201	Research Tool Laboratory	EEC	0	0	4	4	2
			TOTAL	20	1	10	31	24

Sl. No.	Course Code	Course Title	Cate Gory	-	Periods per week		Total Contact	Credits
			_	L	Τ	Р	Periods	
1	AC22101	English for Research Paper Writing	AC	2	0	0	2	0
2	AC22102	Constitution of India	AC	2	0	0	2	0
3	AC22201	Disaster Management	AC	2	0	0	2	0
4	AC22202	நற்றமிழ்இலக்கியம்	AC	2	0	0	2	0

AUDIT COURSES (AC)

PROFESSIONAL ELECTIVE I – SEMESTER I

Sl. No.	Course Code	Course Title	Cate Gory	Periods Per Week			Total Contact	Credits
			-	L	Т	Р	Periods	
1	SE22111	Advanced Concrete Technology	PEC	3	0	0	3	3
2	SE22112	Prefabricated Structures	PEC	3	0	0	3	3
3	SE22113	Prestressed Concrete Structures	PEC	3	0	0	3	3
4	SE22114	Mechanics of Composite Materials	PEC	3	0	0	3	3

PROFESSIONAL ELECTIVES II– SEMESTER II

Sl. No.	Course Code	Course Title	Cate Gory	_	Periods per week		per week Contac		Contact	Credits
				L	Τ	Р	Periods			
1	SE22221	Maintenance and Rehabilitation of Structures	PEC	3	0	0	3	3		
2	SE22222	Design of Form Works	PEC	3	0	0	3	3		
3	SE22223	Design of Steel Concrete Composite Structures	PEC	3	0	0	3	3		
4	SE22224	Offshore Structures	PEC	3	0	0	3	3		

Sl. No.	Course Code	Course Title	Cate Gory	-	iods wee	k	Total Contact	Credits
				L	Т	Р	Periods	
1	SE22231	Industrial Structures	PEC	3	0	0	3	3
2	SE22232	Wind and Cyclone Effects on Structures	PEC	3	0	0	3	3
3	SE22233	Nonlinear Analysis of Structures	PEC	3	0	0	3	3
4	SE22234	Optimization of Structures	PEC	3	0	0	3	3

PROFESSIONAL ELECTIVES III – SEMESTER II

MA22108	ADVANCED MATHEMATICAL METHODS L T P	C					
	FOR STRUCTURAL ENGINEERS	4					
COURSEOBJE		4					
	iarize the students with basic concepts of statistical tests, experimental des	ions					
	ion of equations	igns					
	the students with the techniques of statistical tests and design of experiment	ts					
	arize the students with the techniques of studenteer tests and design of experiment						
	ng partial differential equation	uion					
	iarize the students with the concept and the application of Fourier Transf	orm					
technique		orm					
	int the student with the basic concept of Tensor analysis and its applications	1					
UNIT I	TESTING OF HYPOTHESIS	12					
	thesis - Type I and Type II errors - Large sample tests based on Nor						
	single mean and difference of means -Tests based on t distribution for si						
	ty of means - Test based on F distribution for equality of variances - Chi sq						
-	ariance and goodness of fit - Independence of attributes - Contingency ta						
Analysis of r c t							
UNIT II	DESIGN OF EXPERIMENTS	12					
	es –Analysis of variances-Different designs of Blocks: One way classificat						
	domized Block Design (CBD)-two-way classifications: Randomized B						
1 1	Three-way classification: Latin square design (LSD)-2-square factorial design						
	ept of the loss function – Experiment design strategy.	0					
UNIT III	LAPLACE TRANSFORM TECHNIQUES FOR PARTIAL	12					
	DIFFERENTIAL EQUATIONS						
Laplace transfor	rm: Definitions–Properties–Transform error function-Bessel's function-D	Dirac					
-	Init step functions-Convolution theorem-Inverse Laplace transform: Com						
	a-Solutions to partial differential equations: Heat equation-Wave equation.	-					
UNIT IV	FOURIER TRANSFORM TECHNIQUES FOR PARTIAL	12					
	DIFFERENTIALEQUATIONS						
Fourier transfor	m: Definitions-Properties-Transform of elementary functions -Dirac of	lelta					
function-Convo	lution theorem-Parseval's identity -Solutions to partial differential equati	ons:					
Heat equation-W	Vave equation–Laplace and Poisson's equations.						
UNIT V	TENSOR ANALYSIS	12					
Summation cor	vention-Contravariant and covariant vectors-Contraction of tensors-I	nner					
product-Quotier	t law-Metric tensor-Christoffel symbols-Covariant differentiation-Gradi	ient-					
Divergence and	curl.						
	TOTAL: 60 PERIO	DDS					
COURSE OUT	COMES:						
Upon completion	on of the course, the students will/ will be able to						
CO1: Def	Define the basic concept of statistical tests, experimental designs, tensors, Laplace						
CO1: $\begin{bmatrix} DC1 \\ 1 \end{bmatrix}$	and Fourier transforms						
and	Fourier transforms						

CO3:	Interpret Laplace and Fourier transform techniques inpartial differential equations
CO4:	Utilize the hypothesis test, design of experiments and tensor analysis in engineering disciplines
CO5:	Solve the boundary value problems using Laplace and Fourier transform techniques in engineering applications
REFERE	NCES:
1.	Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition, 2016.
2.	SankaraRao, K., "Introduction to Partial Differential Equations", Prentice Hall of India Pvt.Ltd., New Delhi, 1997.
3.	Andrews L.C. and Shivamoggi, B., "Integral Transforms for Engineers", Prentice Hall of India Pvt. Ltd., New Delhi, 2009.
4.	Kay, D. C., "Tensor Calculus", Schaum's Outline Series, Tata McGraw Hill Edition, 2014.
5.	Ranjit K Raj, "A primer on the Taguchi method", Society of Manufacturing Engineers, Second edition, 2010.

СО	Programme Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	2	2	-	-			
CO2	1	-	2	2	-	-			
CO3	1	-	2	2	-	-			
CO4	1	-	2	2	-	-			
CO5	1	_	2	2	-	_			
Average	1	-	2	2	-	-			

SE22101	STRUCTURAL DYNAMICS AND	L	Τ	P	С
	EARTHQUAKE ENGINEERING				
		3	0	2	4
COURSEOBJECTIVE	S:				

• To expose the students the principles and methods of dynamic analysis of structures and to prepare them for designing the structures for wind, earthquake and other dynamic loads

UNIT I	PRINCIPLES OF VIBRATION ANALYSIS	9	
Mathematical models of single degree of freedom systems - Free and forced vibration of SDOF			
systems, Response of SDOF to special forms of excitation, Effect of damping, Evaluation of			
damping, Transmissib	ility, vibration control, Tuned mass damper.		
UNIT II	DYNAMIC RESPONSE OF MULTI-DEGREE OF FREEDOM	9	

	1		DIT	ANIC	/ NLOI	Ono		OL II	DEGUE		LED	,
			SYS	TEMS								L
N / 1	1	1 1	6.	1	<u> </u>	1	1	1	1.1 1	<u> </u>	1	

Mathematical models of two degree of freedom systems and multi degree of freedom systems,

free and forced vibrations of two degree and multi degree of freedom systems, normal modes of vibration, applications.orthogonality of normal modes, free and forced vibrations of multi degree of freedom systems, Mode superposition technique, Applications.

UNIT IIIDYNAMIC RESPONSE OF CONTINUOUS SYSTEMS9					
Engineering Seismology Seismotectonics and Seismic Zoning of India, Earthquake Monitoring					
and Seismic Instrumentation, Characteristics of Strong Earthquake Motion, Estimation of					
Earthquake Parameters, Microzonation. Effect of Earthquake on Different Types of Structures					
Lessons Learnt From Past Earthquakes -Evaluation of Earthquake Forces as per coda					
provisions - Response Spectra, Design Spectra.					
UNIT IV EARTHQUAKE GROUND MOTION AND ITS EFFECTS ON					
STRUCTURES					
Engineering Seismology Seismotectonics and Seismic Zoning of India, Earthquake Monitoring					
andSeismic Instrumentation, Characteristics of Strong Earthquake Motion, Estimation of					
EarthquakeParameters, Microzonation. Effect of Earthquake on Different Types of Structures					
Lessons LearntFrom Past Earthquakes -Evaluation of Earthquake Forces as per codal provisions					
– ResponseSpectra, Design Spectra.					
UNIT VEARTHQUAKE RESISTANT DESIGN OF MASONRY AND9					
RC STRUCTURES					
Structural Systems - Types of Buildings - Causes of damage - Planning Considerations - effect					
of material of construction on performance of structures - Philosophy and Principle of					
Earthquake Resistant Design - Guidelines for Earthquake Resistant Design - Earthquake					
Resistant Design of Masonry Buildings and R.C.C. Buildings. Design consideration - Rigid					
Frames – Shear walls - Lateral load analysis of structures- Capacity based Design and detailing.					
TOTAL: 45 PERIODS					

T TOT (NE EVDEDIMENTO
	OF EXPERIMENTS

•	Calculation of linear and non-linear seismic response quantities of an SDOF system
	based on any one of the numerical method algorithm in excel sheet
•	Construction of elastic as well as inelastic response spectrum for Indian earthquakes
	using Prism software.
•	MATLAB software application in calculating natural frequencies and mode shape of
	MDOF system and eventually its base shear and base moment
•	Earthquake response spectrum analysis of systems with distributed mass and
	elasticity
٠	Dynamic analysis of system continua using finite element analysis.
	TOTAL :30 PERIODS
COURS	E OUTCOMES:
Upon co	mpletion of the course, the students will/ will be able to
CO1.	Gain knowledge on vibration analysis of system/structures with single degree of
CO1:	freedom as well as Multi degrees of freedom under free and forced vibration

CO 2.	Derive a mathematical model of continuous system and do a dynamic analysis under
CO2:	free and forced vibration

CO3:	Explain the causes and effect of earthquake
CO4:	Design of masonry and RC structures as earthquake resistant
CO5:	Calculate Earthquake Forces as per codal provisions
REFER	ENCES:
1.	Anil K.Chopra, Dynamics of Structures, Pearson Education, 2020.
2.	Leonard Meirovitch, Elements of Vibration Analysis, McGraw Hill, 1986, IOS Press, 2006.
3.	Mario Pazv and William Leigh, Structural Dynamics: Theory and Computation, Springer; 5 th Corrected ed. 2004. Corr. 2nd printing 2006 edition (3 June 2006) 2004.
4.	Roy R.Craig, Jr, Andrew J. Kurdila, Fundamentals of Structural Dynamics, John Wiley & 2011.
5.	Brebbia C. A.," Earthquake Resistant Engineering Structures VIII", WIT Press, 2015

СО	Programme Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	3	2	3	1			
CO2	1	-	3	2	1	1			
CO3	2	-	3	2	3	2			
CO4	3	-	3	3	-	2			
CO5	2	-	3	2	3	2			
Average	2	-	3	2	2	2			

SE22102	THEORY OF ELASTICITY AND PLASTICITY	L	Τ	Р	C
		3	1	0	4
COURSEOBJECTIV	/ES:				
• To understand	the concept of 3D stress, strain analysis and its applicatio	ns			
UNIT I	ELASTICITY				12
Analysis of stress and	l strain, Equilibrium Equations - Compatibility Equation	is -	Stres	ss St	rain
Relationship. Generali	zed Hooke's law, Beltrami Michell Equation - Navier's E	Equa	tion.		
UNIT II	2D STRESS STRAIN PROBLEMS				12
Plane stress and plane	e strain - Simple two dimensional problems in Cartesia	n an	d Po	olar	Co-
ordinates, Airy's Stres	s function, Introduction to photo elasticity.				
UNIT III	TORSION OF NON-CIRCULAR SECTION				12
St. Venant's approach - Prandtl's approach - Membrane analogy - Torsion of Thin Walled-					
Open and Closed sections-Design approach to open web section subjected to torsion, Torsion of					
circular and non-circul	lar sections (Ellipse, triangle and rectangle).				
UNIT IV	BEAMS ON ELASTIC FOUNDATIONS				12
Beams on Elastic four	ndation – Methods of analysis – Elastic line method – Id	ealiz	atio	n of	soil

medium – Winkler model – Infinite beams – Semi infinite and finite beams –Solution by Finite Differences, Boundary conditions - Applications to elasticity problems.

UNIT V PLASTICITY

12

Physical Assumptions – Yield Criteria – Failure Theories – Applications of Thick Cylinder – Plastic Stress Strain Relationship.Elasto-Plastic Problems in Bending and Torsion.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

Upon completion of the course, the students will.../ will be able to...

CO1:	Define Strain tensor, plane stress and strain, torsion, beams on elastic foundation and plasticity
CO2:	Describe the fundamentals of stress and strain, torsional behavior, beams on elastic foundation and plastic stress strain relationship
CO3:	Solve real life problems on plane stress and plane strain conditions, Circular and non-circular sections, bending of beams and elastic foundations.
CO4:	Analyse stress, strain, torsional behavior of sections, beams resting on elastic foundations and simple boundary value problems with elasto-plastic bending and torsion
CO5:	Compare various theories of failure, torsional behavior of sections and methods of analysis of beam resting on elastic foundatio
REFERE	NCES:
1.	Ansel.C.Ugural and Saul.K.Fenster, "Advanced Strength and Applied Elasticity," Fourth Edition, Prentice Hall Professional technical Reference, New Jersy, 2003.
2.	Chakrabarty.J, "Theory of Plasticity", Third Edition, Elsevier Butterworth - Heinmann – UK, 2011.
3.	Jane Helena H, "Theory of Elasticity and Plasticity", PHI Learning Pvt. Ltd., 2017.
4.	Slater R.A.C, "Engineering Plasticity", John Wiley and Son, New York, 1977.
5.	Timoshenko, S. and GoodierJ.N."Theory of Elasticity", McGraw Hill Book Co., New York, 2017.

СО	Programme Outcomes							
CO	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	-	1	-	-		
CO2	1	-	-	1	-	-		
CO3	2	-	-	3	-	2		
CO4	2	-	-	3	-	-		
CO5	-	-	2	2	-	-		
Average	2	-	2	2	-	2		

RM22101	RESEARCH METHODOLOGY	L	Т	P	C	
		2	0	0	2	
COURSE	OBJECTIVES:				-	
• To	give an overview of the research methodology and IPR, and explaint	he t	echn	ique	s of	
	a collection and analysis					
UNIT I	RESEARCH DESIGN				6	
	of research process and design, Use of Secondary and exploratory da			swer	^t the	
research q	uestion, Qualitative research, Observation studies, Experiments and S	urve	eys.			
UNIT II	DATA COLLECTION AND SOURCES				6	
Measurem	ents, Measurement Scales, Questionnaires and Instruments,	Sa	mpli	ng	and	
methods.D	ata - Preparing, Exploring, examining and displaying.					
UNIT III	UNIT III DATA ANALYSIS AND REPORTING 6					
Overview	of Multivariate analysis, Hypotheses testing and Measures of Associ	iatio	n.Pr	esen	ting	
Insights an	d findings using written reports and oral presentation.				_	
UNIT IV	JNIT IV INTELLECTUAL PROPERTY RIGHTS 6					
Intellectua	l Property – The concept of IPR, Evolution and development of conception of the second s	cept	of I	PR,	IPR	
	nt process, Trade secrets, utility Models, IPR & Bio diversity, Rol					
WTO in I	PR establishments, Right of Property, Common rules of IPR pract	ices	, Ту	pes	and	
Features of	f IPR Agreement, Trademark, Functions of UNESCO in IPR mainten	ance	e.			
UNIT V	PATENTS				6	
	objectives and benefits of patent, Concept, features of patent,					
	on, Types of patent application, process E-filling, Examination of					
	vocation, Equitable Assignments, Licences, Licensing of related	pat	tents	, pa	tent	
agents, Re	gistration of patent agents.					
	ΤΟΤΑΙ	1:3	0 PE	ERIC	DDS	
COURSE	OUTCOMES:					
Upon com	pletion of the course, the students will/ will be able to					
CO1:	Outline the methodology of research					
CO2:	Explain the research problem, data collection methods, IPR and pate					
CO3:	Prepare a well-structured research paper, scientific presentation	ons	and	ł pa	tent	
005:	applications					
COA	Develop awareness on IPR, patent law and procedural mechanism in	ı ob	taini	ing a		
CO4:	patent			-		
CO5:	Compare the methods of measurement scale, questionnaire, samplin	g ar	nd da	ata		
	cos: analysis					
REFERE						
1	Cooper Donald R, Schindler Pamela S and Sharma JK, "Bu	sine	ss F	Resea	arch	
1.	Methods", Tata McGraw Hill Education, 2012.					
2.	Kothari C R, Gaurav Garg, "Research Methodology- Methods a	nd	Tecl	nniaı	ies"	
	, <u> </u>			1.		

	New Age International Publishers, 2019.
3.	Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade Secrets", Entrepreneur Press, 2007.
4.	David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques", Wiley, 2007.
5.	The Institute of Company Secretaries of India, Statutory body under an Act of parliament, "Professional Programme Intellectual Property Rights, Law and practice", September 2013.

СО	Programme Outcomes						
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	-	-	3	-	-	-	
CO2	-	-	3	-	-	-	
CO3	-	2	3	-	-	-	
CO4	-	-	3	-	-	-	
CO5	-	-	3	-	-	2	
Average	-	2	3	-	-	2	

SE22103	ADVANCED STRUCTURAL ENGINEERING	L	Т	P	C				
	LABORATORY								
		0	0	4	2				
COUDSEODI									

COURSEOBJECTIVES:

• To provide a thorough knowledge of material selection through the material testing based on specification

LIST OF EXPERIMENTS

- Mix design of concrete as per IS, ACI & BS methods for high performance concrete.
- Flow Characteristics of Self Compacting concrete.
- Effect of minerals and chemical admixtures in concrete at fresh and hardened state with relevance to workability, strength and durability.
- NDT on hardened concrete UPV, Rebound hammer and core test.
- Permeability test on hardened concrete– Demonstration.
- Ultrasonic interferometer ultrasonic velocity in liquids.
- Electrical conductivity of metals and alloys with temperature-four probe method.
- Deflection test on Beam.
- Compression test on column.

LIST OF EQUIPMENTS

- Strong Floor
- Loading Frame
- Hydraulic Jack
- Load Cell
- Proving Ring
- Demec Gauge
- Rebound Hammer
- Ultrasonic Pulse Velocity Tester
- Dial Gauges
- Four probe apparatus
- Compression testing machine
- L box apparatus
- J box apparatus
- LVDT

TOTAL: 60 PERIODS

	IOTAL: 00 I ERIODS
COURSE	OUTCOMES:
Upon con	upletion of the course, the students will/ will be able to
CO1:	Recall the basis of the design concrete mix which will satisfy the fresh and hardened
	concrete properties
CO2:	Explain the experimental methods to find the material properties.
CO3:	Apply suitable non-destructive testing for checking the strength of concrete.
CO4:	Apply the analytical techniques and graphical analysis to interpret the experimental
0.04.	data
CO5:	Analyze the effect of mineral admixtures in fresh and hardened concrete property
REFERE	NCES
1.	Dally J W, and Riley W F, "Experimental Stress Analysis", McGraw-Hill Inc. New
1.	York,2000.
2.	Gambhir, M.L; 'Concrete Technology", 3 Edition, Tata McGraw Hill Publishing Co
۷.	Ltd, New Delhi, 2013.
3.	1S10262-2009 Recommended Guidelines for Concrete Mix Design, Bureau of
5.	IndianStandards, New Delhi, 1998
4.	ACI 211.1 : Standard Practice for Selecting Proportions for Normal, Heavyweight,
4.	and Mass Concrete.
5.	Shetty M.S., Concrete Technology, Revised Edition, S.Chand and Company Ltd.
Э.	Delhi, 2018.

СО	Programme Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	1	2	1	-	2			
CO2	3	-	2	-	2	2			
CO3	1	2	2	2	3	2			
CO4	3	3	2	2	-	2			
CO5	2	1	2	2	2	2			
Average	2	2	2	2	2	2			

SE22104TECHNICAL SEMINARLTPC

COURSEOBJECTIVES:

• To work on a specific technical topic in Structural Engineering in order to acquire the skills of oral presentation and to acquire technical writing abilities for seminars and conferences

0 0

2

SYLLABUS

The students will work for two hours per week guided by a group of staff members. They will be asked to talk on any topic of their choice related to Structural Engineering and to engage in dialogue with the audience. A brief copy of their talk also should be submitted. Similarly, the students will have to present a seminar of not less than fifteen minutes and not more than thirty minutes on the technical topic. They will also answer the queries on the topic. The students as audience also should interact. Evaluation will be based on the technical presentation and the report and also on the interaction during the seminar.

	TOTAL: 30 PERIODS
COURSE	COUTCOMES:
Upon con	npletion of the course, the students will/ will be able to
CO1:	Identify latest developments in the field of Structural Engineering
CO2:	Develop technical writing abilities for seminars, conferences and journal
GOA	publications
CO3:	Make use of modern tools to present the technical details

СО			Programm	ne Outcomes		
CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	3	-	-	3
CO2	-	3	1	-	-	3
CO3	-	-	1	-	-	3
Average	3	3	2	-	-	3

	2201 ADVANCED STEEL STRUCTURES	\mathbf{L}	Т	P	С
		3	1	0	4
	BJECTIVES:				
	study the behaviour of members and connections, analysis				
	strial buildings and roofs, chimneys. Study the design of with co	old fo	rmeo	d ste	el
	plastic analysis of structures				r
UNIT I	GENERAL				12
	nembers subjected to combined forces - Design of Purlins, Lu				
	Gable wind girder – Design of simple bases, Gusseted bases and	Mom	ent I	Resis	ting
	Design of Side rails.				r –
UNIT II	DESIGNOF CONNECTIONS				12
• •	onnections - Welded and Bolted - Throat and Root Stresses				
-	ices-Tension Splices Seated Connections - Unstiffened and				
	- Moment Resistant Connections - Clip angle Connectio	ns –	Spl	it b	eam
	– Framed Connections HSFG bolted connections.				
UNIT III	ANALYSIS AND DESIGN OFINDUSTRIALBUILDIN				12
	d design of different types of trusses - Wind load analysis - C				
	combination - Analysis and design of industrial buildings - Sw	vay a	nd n	on s	way
	eismic design of steel buildings - Design of plate Girder.				1
UNIT IV	PLASTIC ANALYSISOF STRUCTURES				12
	, Shape factor, Moment redistribution, Combined mechanisms,	•		-	ortal
	ctofaxialforce-Effectofshearforceonplasticmoment,Connections-R	-			
	isting connections. Design of Straight Corner Connections – Hur	nched	Con	nectio	ons-
0	ontinuous beams.				
UNIT V	DESIGN OF LIGHT GAUGESTEELSTRUCTURE				12
	to Direct Strength Method - Cold formed light gauge section	1 - T			
				nrec	sion
	iffened - multiple stiffened and unstiffened element Behaviou	r of		-	
Elements -	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou	ir of our of	Un	stiffe	ned
Elements - and Stiffene	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – I	ur of our of Latera	f Un l buc	stiffe	ned
Elements - and Stiffene	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – I ear Lag – Flange Curling – Design of Compression Members – W	ur of our of Latera all Stu	Un buc Uds.	stiffe cklin	ned g of
Elements - and Stiffene beams – She	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – I ear Lag – Flange Curling – Design of Compression Members – Wa TOT	ur of our of Latera all Stu	Un buc Uds.	stiffe cklin	ned g of
Elements - and Stiffene beams – She COURSE C	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – I ear Lag – Flange Curling – Design of Compression Members – W TOTA	ur of our of Latera all Stu	Un buc Uds.	stiffe cklin	ned g of
Elements - and Stiffene beams – She COURSE (Upon comp	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – L ear Lag – Flange Curling – Design of Compression Members – Wa TOTA DUTCOMES: letion of the course, the students will/ will be able to	ur of bur	Un l bud lds. 0 PH	stiffe cklin E RIC	ned g of DDS
Elements - and Stiffene beams – She COURSE (Upon comp	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – I ear Lag – Flange Curling – Design of Compression Members – W TOTA OUTCOMES: letion of the course, the students will/ will be able to Knowledge in the behaviour of structural elements in the in	ur of bur	Un l bud lds. 0 PH	stiffe cklin E RIC	ned g of DDS
Elements - and Stiffene beams – She COURSE C Upon comp CO1: I s	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – I ear Lag – Flange Curling – Design of Compression Members – Wart TOTA UTCOMES: letion of the course, the students will/ will be able to Knowledge in the behaviour of structural elements in the in ubjected to different forces	ur of bur	E Un l bud ids. 0 PH	stiffe cklin E RIC truct	ened g of DDS ures
Elements - $and Stiffenerbeams - SheCOURSE CUpon compCO1: \begin{bmatrix} I \\ s \\ c \\ I \end{bmatrix}$	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – I ear Lag – Flange Curling – Design of Compression Members – Wa TOTA OUTCOMES: letion of the course, the students will/ will be able to Knowledge in the behaviour of structural elements in the in subjected to different forces nterpret the basic concepts in the design of structural mem	ur of bur	E Un l bud ids. 0 PH	stiffe cklin E RIC truct	ened g of DDS ures
Elements - and Stiffene beams - She COURSE (Upon comp CO1: S CO2:	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – I ear Lag – Flange Curling – Design of Compression Members – W TOTA OUTCOMES: Ietion of the course, the students will/ will be able to Knowledge in the behaviour of structural elements in the in subjected to different forces nterpret the basic concepts in the design of structural mem combined forces	ur of jour of atera all Stu AL: 6 dustri bers	E Un l buc <u>ids.</u> 0 PH al st subj	truct	oned g of DDS ures
Elements - $and Stiffenerbeams - SheCOURSE (Upon compCO1: \begin{bmatrix} I \\ s \\ c \\ c$	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – L ear Lag – Flange Curling – Design of Compression Members – War TOTA OUTCOMES: letion of the course, the students will/ will be able to Knowledge in the behaviour of structural elements in the in ubjected to different forces nterpret the basic concepts in the design of structural mem combined forces Choose an appropriate method to design the structural elements	ur of jour of atera all Stu AL: 6 dustri bers	E Un l buc <u>ids.</u> 0 PH al st subj	truct	oned g of DDS ures
Elements - $and Stiffenerbeams - SheCOURSE CUpon compCO1: \begin{bmatrix} I \\ S \end{bmatrix}CO2: \begin{bmatrix} I \\ C \\ C \\ C \\ S \end{bmatrix}$	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – I ear Lag – Flange Curling – Design of Compression Members – Wa TOTA OUTCOMES: letion of the course, the students will/ will be able to Knowledge in the behaviour of structural elements in the in subjected to different forces nterpret the basic concepts in the design of structural mem combined forces Choose an appropriate method to design the structural elements tructures	ur of our of our of atera all Stu AL: 6 dustri bers and jo	E Un l buc ids. 0 PH al st subj	truct of s	ened g of DDS ures l to teel
Elements - $and Stiffenerbeams - SheCOURSE CUpon compCO1: BCO2: CCO3: C$	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – I ear Lag – Flange Curling – Design of Compression Members – W TOTA OUTCOMES: Ietion of the course, the students will/ will be able to Knowledge in the behaviour of structural elements in the in ubjected to different forces nterpret the basic concepts in the design of structural mem combined forces Choose an appropriate method to design the structural elements tructures Analyze the plastic behavior of industrial structures, light gauge st	ur of jour of jour of jour of jour of jour of jour of all students and jour states and jour st	E Un l buc ids. 0 PH al st subj	truct of s	ures teel
Elements - indicate state sta	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – I ear Lag – Flange Curling – Design of Compression Members – War TOTA DUTCOMES: letion of the course, the students will/ will be able to Knowledge in the behaviour of structural elements in the in subjected to different forces Interpret the basic concepts in the design of structural mem- combined forces Choose an appropriate method to design the structural elements tructures Analyze the plastic behavior of industrial structures, light gauge st lesign the structural elements subjected to different loading condit	ur of jour of jour of jour of jour of jour of jour of all Students and jour of the state of the	i Un l buo ids. 0 PH al si subj pints	truct of s	DDS DDS ures I to teel nd
Elements - indicate state sta	iffened - multiple stiffened and unstiffened element Behaviou Effective width for load and deflection determination – Behaviou d Elements – Design of webs of beams – Flexural members – I ear Lag – Flange Curling – Design of Compression Members – W TOTA OUTCOMES: Ietion of the course, the students will/ will be able to Knowledge in the behaviour of structural elements in the in ubjected to different forces nterpret the basic concepts in the design of structural mem combined forces Choose an appropriate method to design the structural elements tructures Analyze the plastic behavior of industrial structures, light gauge st	ur of jour of jour of jour of jour of jour of jour of all Students and jour of the state of the	i Un l buo ids. 0 PH al si subj pints	truct of s	DDS DDS ures I to teel nd

REFERE	ENCES:
1.	Subramanian.N, Design of Steel Structures, Oxford University Press, 2014.
2.	Duggal, "Design of Steel Structures", Tata McGraw-Hill Education, 2019.
3.	Lynn S. Beedle, Plastic Design of Steel Frames, John Wiley and Sons, 1997.
4.	Narayanan.R.et.al., Teaching Resource on Structural steel Design, INSDAG,
4.	Ministry of Steel Publishing,2000.
5.	Wie Wen Yu, Design of Cold Formed Steel Structures, McGraw Hill Book
5.	Company,1996

СО			Programm	e Outcomes		
CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	2	-	1
CO2	1	2	1	2	-	1
CO3	3	2	3	3	2	2
CO4	2	2	3	3	2	2
CO5	2	2	2	2	-	2
Average	2	2	2	2	2	2

SE22202	FINITE ELEMENT ANALYSIS OF STRUCTURES	L	Т	Р	С	
		3	0	2	4	
COURSEOBJI	ECTIVES:					
• To make the students understand the basics of the Finite Element Technique, and to						
cover the	e analysis methodologies for 1-D, 2-D and 3-D Structural Engine	eerir	ng pr	oble	ms	
UNIT I	INTRODUCTION				9	
Introduction - E	Basic Concepts of Finite Element Analysis - Introduction to Ela	stic	ity-	Step	s in	
Finite Element	Analysis - Finite Element Formulation Techniques - Vir	tual	Wo	ork	and	
Variational Prin	ciple - Galerkin Method - Finite Element Method: Displacem	nent	App	oroac	ch -	
Stiffness Matrix	and Boundary Conditions.				-	
UNIT II	ELEMENT PROPERTIES				9	
Natural Coordin	nates - Triangular Elements-Rectangular Elements - Lagrange	and	Ser	endij	pity	
Elements - Soli	id Elements - Isoparametric Formulation - Stiffness Matrix of	of Is	opa	rame	tric	
Elements Nume	rical Integration: One, Two and Three Dimensional – Problems.					
UNIT III	ANALYSIS OF FRAME STRUCTURES				9	
Stiffness of Tr	uss Members-Analysis of Truss-Stiffness of Beam Members	-Fin	ite]	Elen	nent	
Analysis of Con	tinuous Beam-Plane Frame Analysis-Analysis of Grid and Space	e Fr	ame.		-	
UNIT IV	TWO AND THREE DIMENSIONAL SOLIDS				9	
Constant Strain	Triangle - Linear Strain Triangle - Rectangular Elements- Nume	erica	l Ev	alua	tion	
of Element St	tiffness - Computation of Stresses, Geometric Nonlinear	ity	and	St	atic	
	Axisymmetric Element - Finite Element Formulation of Axisyn	nme	tric 1	Elen	ent	
- Finite Element	Formulation for 3 Dimensional Elements- Problems.					

UNIT V					
	ion to Plate Bending Problems - Finite Element Analysis of Thin Plate - Finite				
	Analysis of Thick Plate - Finite Element Analysis of Skew Plate -Introduction to Finite				
Strip Me	ethod - Finite Element Analysis of Shell -Finite Elements for Elastic Stability -				
Dynamic	Analysis.				
	TOTAL: 45 PERIODS				
LIST O	F EXPERIMENTS				
1.	Dynamic analysis of frame using mathematical computational software.				
2.	Finite Element Analysis of 2D truss and 3D space trusses.				
3.	Modelling and Finite Element Analysis of RC beams and slabs.				
4.	Finite Element Analysis of thin and thick plates.				
5.	Stability analysis of structure using FEM.				
	TOTAL: 30 PERIODS				
COURS	E OUTCOMES:				
Upon co	mpletion of the course, the students will/ will be able to				
CO1:	Understand the basics of finite element analysis, its approximation, tackling errors				
COI	induced and the step by step procedure involved in analysing various structures				
CO2:	Describe the pioneer methods to finite element analysis and their comparison				
CO3:	Apply the finite element analysis procedure on various structures in order to calculate				
COS	the internal forces				
CO4:	Analyze the results by varying the various parameters				
CO5:	Evaluate the static as well as dynamics performances of various structures using any finite element analysis software				
REFER					
METER	David Hutton, "Fundamentals of Finite Element Analysis", Tata McGraw Hill				
1.	Publishing Company Limited, New Delhi, 2017.				
0	C. Krishnamoorthy, "Finite Element Analysis: Theory and Programming", Tata				
2.	McGraw Hill Publishing Company Limited, New Delhi, 2017.				
2	Logan D. L., A First Course in the Finite Element Method, Thomson- Engineering,				
3.	3rd edition, 2001.				
4	Zienkiewicz, O.C. and Taylor, R.L., "The Finite Element Method", Seventh Edition,				
4.	McGraw – Hill, 2013.				
-	Chandrupatla, R.T. and Belegundu, A.D., "Introduction to Finite Elements in				
5.	Engineering", Fourth Edition, Prentice Hall of India, 2015.				
	Mapping of Course Outcomes to Programme Outcomes				
	Programme Outcomes				
00					

СО	Programme Outcomes								
CO	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	3	1	-	1			
CO2	1	-	3	1	-	1			
CO3	1	3	3	2	1	3			
CO4	1	3	3	2	1	3			
CO5	3	3	3	3	3	3			
Average	1	3	3	2	2	2			

	STABILITY OF STRUCTURES	L	Т	P	C
		3	0	0	3
	OBJECTIVES:				
•]	To study the concept of buckling and analysis of structuralelements				
UNIT I	BUCKLING OF COLUMNS				9
	quilibrium - Classification of buckling problems - concept of equi				
	on and vibration approaches to stability analysis - Eigen value pro				
	or columns - Analysis for various boundary conditions - using Equi				
	Approximate methods - Rayleigh Ritz, Galerkins approach - Numeric	cal 7	Fech	niqu	es ·
	rence method - Effect of shear on buckling.				-
UNIT II	BUCKLING OF BEAM-COLUMNSAND FRAMES				9
	beam column - Stability analysis of beam column with sin				
	ed loads, distributed load and end couples Analysis of rigid jointed	frai	nes	with	an
	ay – Use of stability function to determine the critical load.				
UNIT III	TORSIONAL ANDLATERAL BUCKLING			1 11	9
	buckling – Combined Torsional and flexural buckling - Local buck				
	tions.Numerical solutions. Lateral buckling of beams, pure ben				
	and cantilever beams. St Venant torsion and non-uniform torsion	n, F	kayle	eigh-	R1t
	torsional flexural buckling of column.				
UNIT IV	BUCKLINGOFPLATES		A	1	9
	differential equation - Buckling of thin plates, various edge conditio				
	n and energy approach – Finite difference method.Shell bucklin				
	equation, Shell buckling by using finite deflection theory, Post buc d cylindrical shell panel.	KIIII	g oi	axia	111 V
•					
					-
UNIT V	INELASTIC BUCKLING	ontr	icall	v lo	9
Double me	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecce				9 ade
Double me inelastic co	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecco olumn. Inelastic buckling of plates - Post buckling behaviour ofplates	s, Li	near	and	9 ade no
Double me inelastic co Linear Ei	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecco olumn. Inelastic buckling of plates - Post buckling behaviour ofplates gen Value problems-Buckling problem orthogonality relation	s, Li	near	and	9 ade no
Double me inelastic co Linear Ei	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecco olumn. Inelastic buckling of plates - Post buckling behaviour ofplates gen Value problems-Buckling problem orthogonality relation to method, Galerkin method.	s, Li —R	near itz	and met	9 ade no hoc
Double me inelastic co Linear Ei	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecco olumn. Inelastic buckling of plates - Post buckling behaviour ofplates gen Value problems-Buckling problem orthogonality relation	s, Li —R	near itz	and met	9 ade no hoc
Double ma inelastic co Linear Ei Timoshenk	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecco olumn. Inelastic buckling of plates - Post buckling behaviour ofplates gen Value problems-Buckling problem orthogonality relation to method, Galerkin method.	s, Li —R	near itz	and met	9 ade no hod
Double me inelastic co Linear Ei Timoshenk	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecce olumn. Inelastic buckling of plates - Post buckling behaviour ofplates gen Value problems-Buckling problem orthogonality relation to method, Galerkin method. TOTAI	s, Li —R	near itz	and met	9 ade no hod
Double me inelastic co Linear Ei Timoshenk	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecce olumn. Inelastic buckling of plates - Post buckling behaviour ofplates gen Value problems-Buckling problem orthogonality relation to method, Galerkin method. TOTAI	s, Li –R L : 4	near itz 5 PE	and met	9 ade no hoc
Double ma inelastic co Linear Ei Timoshenk COURSE Upon com	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecce olumn. Inelastic buckling of plates - Post buckling behaviour ofplates gen Value problems-Buckling problem orthogonality relation to method, Galerkin method. TOTAI OUTCOMES: pletion of the course, the students will/ will be able to	s, Li –R L : 4	near itz 5 PE	and met	9 ade no: hod
Double me inelastic co Linear Ei Timoshenk COURSE Upon com CO1:	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecco olumn. Inelastic buckling of plates - Post buckling behaviour ofplates gen Value problems-Buckling problem orthogonality relation to method, Galerkin method. TOTAI OUTCOMES: pletion of the course, the students will/ will be able to Understanding the buckling effect of structural elements by various a	s, Li –R	near itz 5 PE	and met	9 ade no hod
Double me inelastic co Linear Ei Timoshenk COURSE Upon com CO1: CO2:	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecco olumn. Inelastic buckling of plates - Post buckling behaviour ofplates gen Value problems-Buckling problem orthogonality relation to method, Galerkin method. TOTAI OUTCOMES: pletion of the course, the students will/ will be able to Understanding the buckling effect of structural elements by various a Describing the mathematical problems in structural elements	s, Li –R	near itz 5 PE	and met	9 ade no hod
Double me inelastic co Linear Ei Timoshenk COURSE Upon com CO1: CO2: CO3:	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecco olumn. Inelastic buckling of plates - Post buckling behaviour ofplates gen Value problems-Buckling problem orthogonality relation to method, Galerkin method. TOTAI OUTCOMES: pletion of the course, the students will/ will be able to Understanding the buckling effect of structural elements by various a Describing the mathematical problems in structural elements Applying differential equation and different methods in structural elements	s, Li –R	near itz 5 PE	and met	9 ade no hod
Double me inelastic co Linear Ei Timoshenk COURSE Upon com CO1: CO2: CO3: CO3:	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecco olumn. Inelastic buckling of plates - Post buckling behaviour ofplates gen Value problems-Buckling problem orthogonality relation to method, Galerkin method. TOTAI OUTCOMES: pletion of the course, the students will/ will be able to Understanding the buckling effect of structural elements by various a Describing the mathematical problems in structural elements Applying differential equation and different methods in structural elements Analysis the buckling effect of beam, column, and plate Create to communicate inelastic behavior of different methods	s, Li –R	near itz 5 PE	and met	9 ade no: hod
Double me inelastic co Linear Ei Timoshenk COURSE Upon com CO1: CO2: CO3: CO3: CO4: CO5:	INELASTIC BUCKLING odulus theory - Tangent modulus theory - Shanley's model - Ecco olumn. Inelastic buckling of plates - Post buckling behaviour ofplates gen Value problems-Buckling problem orthogonality relation to method, Galerkin method. TOTAI OUTCOMES: pletion of the course, the students will/ will be able to Understanding the buckling effect of structural elements by various a Describing the mathematical problems in structural elements Applying differential equation and different methods in structural elements Analysis the buckling effect of beam, column, and plate Create to communicate inelastic behavior of different methods	appr	near itz 5 PE	and met	9 ade no hod

3.	Gambhir, "Stability Analysis and Design of Structures", springer, New York, 2004.
4.	Simitser.G.J and Hodges D.H,"Fundamentals of Structural Stability", Elsevier Ltd., 2006.
5.	Timoshenko.S.P, and Gere.J.M, "Theory of Elastic Stability", McGraw Hill Book Company, 1963.

CO			Programm	ne Outcome	es	
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	1	3	-	-
CO2	3	2	3	3	1	-
CO3	3	3	3	3	1	-
CO4	3	1	3	3	2	-
CO5	3	1	1	3	3	3
Average	3	2	2	3	2	3

SE22204	ADVANCED CONCRETE STRUCTURES	L	Τ	Р	С
		3	0	0	3

COURSEOBJECTIVES:

• To make the students be familiar with behaviour of RCC beams and columns and to design special structural members with proper detailing

UNIT I DESIGN PHILOSOPHY

Limit state design - Review of limit state design - Serviceability limit states - beams, slabs and columns according to IS Codes. Calculation of deflection and crack width according to IS Code. Interaction curve generation for axial force and bending.

9

9

9

Design of slender columns - Design of plain concrete walls- Design of RC walls. Strut and tie method of analysis for corbels and deep beams, Design of corbels, Deep-beams and grid floors.

UNIT III	FLAT SLABS AND YIELD LINEBASED DESIGN	9

Design of flat slabs according to IS method – Check for shear - Design of spandrel beams - Yield line theory and Hillerborg's strip method of design of slabs. Direct design method - Equivalent frame method - Shear in Column.

UNIT IV INELASTIC BEHAVIOUR OF CONCRETE BEAMSANDCOLUMNS

Inelastic behaviour of concrete beams and Baker's method, moment - rotation curves, ductility definitions, evaluation.

UNIT V	DUCTILE DETAILING	9
	of Ductility – Detailing for ductility – Design of beams, columns for ductility - Desi n-situ joints in frames. Flexural yielding in frames and walls- Quality control	
	TOTAL: 45 PERIO	DS
COURSE	E OUTCOMES:	
Upon con	npletion of the course, the students will/ will be able to	
CO1:	State the properties and behaviour of concrete elements	
CO2:	Describe the structural and inelastic behaviour of beams, columns, corbels, F walls, deep beams, gridfloors and Flat slab	RC
CO3:	Design Flexural, compression and special RC elements	
CO4:	Analyse the concrete elements to provide a safe construction	
CO5:	Estimate the deflection, crack width, moment, shear and ductility of the concre elements	ete
REFERE	ENCES:	
1.	Gambhir.M. L., "Design of Reinforced Concrete Structures", Prentice Hall of India 2012.	a,
2.	Purushothaman, P, "Reinforced Concrete Structural Elements: Behaviour Analysis and Design", Tata McGraw Hill,1986.	S
3.	UnnikrishnaPillai and DevdasMenon "Reinforced Concrete Design', Third Edition Tata McGraw Hill Publishers Company Ltd., New Delhi, 2007.	n,
4.	Varghese, P.C, "Advanced Reinforced Concrete Design", Prentice Hall of India, 2005.	
5.	Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of Ind 2007.	lia,

Т

СО			Programm	e Outcome	es	
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	2	2	-	-
CO2	2	-	3	2	-	-
CO3	2	-	-	3	-	-
CO4	2	-	3	3	-	-
CO5	2	-	3	3	-	-
Average	2	-	3	3	-	-
U						

SE22205	STRUCTURAL DESIGN LABORATORY	L	Т	Р	С				
		0	0	4	2				
COURSE	COBJECTIVES:				-				
• Th	e students individually design a structure using modern software tools	ava	ilab	le lik	e				
ЕТ	TABS, STAAD, etc. and present it in the form of a complete detailed du	raw	ing						
SYLLAB	US								
Students	have to work individually with standard codes, computational tool	ls a	nd	softv	vare				
	for analysing, designing and detailing a structure. A detailed report or								
	Ibmitted by individual students in the form of a report and presentation								
	TOTAL		0 PE	ERIC	DDS				
COURSE	COUTCOMES:								
Upon con	npletion of the course, the students will/ will be able to								
	Knowledge in the design of framed structure subjected to h	oad	ls a	nd 1	oad				
CO1:	combination, basic concepts in the design of structural members subjected to								
	combined forces								
CO2:	Choose an appropriate method to design the structural elements and framed								
002.	structures								
	Design and detail structures using computer software/tools a	and	ch	eck	the				
CO3:	correctness								
	using manual approximate methods								
CO4:	Analyze the structure for various loads and load combination ad	cco	rdin	g to	the				
	relevant IS Codes								
CO5:	Evaluate the forces acting, design strength and failure stress in	n tl	ne s	truct	ural				
	elements								

	Programme Outcomes							
CO –	PO1	PO2 PO3 PO4		PO5	PO6			
CO1	2	1	1	-	-	1		
CO2	2	2	3	3	3	2		
CO3	2	2	3	3	3	2		
CO4	2	2	3	3	2	2		
CO5	2	3	1	2	2	2		
Average	2	2	2	3	2	2		

RM22201	RM22201RESEARCH TOOL LABORATORY									
		0	0	4	2					
COURSEOBJ	ECTIVES:									
To fami										
To fami	iarize the journal paper formatting using suitable Software									

To familiarize the journal paper formatting using suitable SoftwarTo familiarise the software for literature review and Bibliography

- To find the plagiarism percentage of article contents
- To prepare a quality research report and the presentation

LIST OF EXPERIMENTS

- Use of tools / Techniques for Research Project management -Microsoft Project / Microsoft OneNote / Asana
- Hands on Training related to Software for Paper Formatting like LaTeX / MS Office
- Design a Layout of a Research Paper Guidelines for Submitting the Research Paper Review Process -Addressing Reviewer Comments.
- Introduction to Data Analysis Software Origin SPSS, ANOVA etc.,
- Introduction to Software for detection of Plagiarism Urkund, Turniton
- Preparing Bibliography / Different Reference Formats. EndNote, Mently
- Format of Project Report Use of Quotations Method of Transcription- Elements: Title Page - Abstract - Table of Contents - Headings and Sub-Headings - Footnotes - Tables and Figures
- Introduction to Microsoft Excel –for Research Analysis
- Presentation using PPTs.
- Data analysis using Matlab

TOTAL: 60 PERIODS

COURSE	COURSE OUTCOMES:						
Upon completion of the course, the students will/ will be able to							
CO1:	List the various stages in research and develop systematic planning of project stages						
CO2:	Write a journal paper and formulate as per the standard journal format						
CO3:	Develop a literature review and relevant references for a research problem using						
005.	suitable software						
CO4:	Determine the plagiarism of the article / report content by using the Software						
CO5:	Compile a research report and the presentation						

CO	Programme Outcomes									
CO	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	-	-	2	-				
CO2	2	3	-	-	-	-				
CO3	-	2	-	-	-	-				
CO4	-	2	-	-	-	-				
CO5	-	3	-	-	-	2				
Average	2	2	-	-	2	2				

PROFESSIONAL ELECTIVE COURSES

SE22111	ADVANCED CONCRETE TECHNOLOGY	L	Т	Р	C				
0222111		3	0	0	3				
COURSE	EOBJECTIVES:	_	-						
	To study the properties of concrete making materials, tests, mix c	lesig	n, s	pecia	al				
	oncretes and various methods for making concrete	C	· · .	L					
UNIT I									
Workabili	ity-Factors affecting workability- tests to measure workability, Comp	oress	ive	stren	gth,				
spilt tensi	ile strength, flexural strength, modulus of elasticity-Test procedure	es- e	ffect	t of	w/c				
ratio.									
UNIT II	CREEP AND SHRINKAGE OF CONCRETE				9				
Factors at	ffecting creep – effects of concrete, Factors affecting shrinkage – F	lasti	ic sh	rink	age,				
drying shi	rinkage, autogenous shrinkage, carbonation shrinkage –effects								
UNIT III	DURABILITY OF CONCRETE				9				
	lity-Correction-Carbonation-Chloride Penetration-Sulphate attack-								
resistance	e - Frost damage - alkali silica reaction - Penetration test - Reboun	d ha	ımm	er te	st –				
	e velocity method, Pull out test.								
UNIT IV STATISTICAL QUILITY CONTROL OF CONCRETE									
					9				
	ength-standard deviation- coefficient of variation- Sampling-testing-ac	cept	ance	crite	-				
Mean stre	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY				eria 9				
Mean stree UNIT V Special co	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n				eria 9				
Mean stree UNIT V Special co	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY				eria 9				
Mean stree UNIT V Special co polymer c	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete.	nix c	conci	rete-	eria 9 Geo				
Mean stree UNIT V Special co polymer c Special P	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n	nix c	conci	rete-	eria 9 Geo				
Mean stree UNIT V Special co polymer c	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete.	nix c con	creti	rete- ng-n	eria 9 Geo nass				
Mean stree UNIT V Special co polymer c Special P concrete.	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTA	nix c con	creti	rete- ng-n	eria 9 Geo nass				
Mean stree UNIT V Special co polymer co Special P concrete.	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTAL	nix c con	creti	rete- ng-n	eria 9 Geo nass				
Mean stree UNIT V Special co polymer co Special P concrete. COURSE Upon cor	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTAL E OUTCOMES: npletion of the course, the students will/ will be able to	nix c con L: 4	concr creti 5 PE	rete- ng-n C RIC	eria 9 Geo nass				
Mean stree UNIT V Special co polymer co Special P concrete.	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTAL COUTCOMES: npletion of the course, the students will/ will be able to Define the materials used in construction, test on concrete, special ty	nix c con L: 4	concr creti 5 PE	rete- ng-n C RIC	eria 9 Geo nass				
Mean stree UNIT V Special co polymer co Special P concrete. COURSE Upon cor CO1:	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTAL E OUTCOMES: npletion of the course, the students will/ will be able to Define the materials used in construction, test on concrete, special ty and various concreting methods	nix c con L: 4: /pes	creti 5 PE of c	rete- ng-n C RIC	eria 9 Geo nass				
Mean stree UNIT V Special co polymer co Special P concrete. COURSE Upon cor	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTAL COUTCOMES: npletion of the course, the students will/ will be able to Define the materials used in construction, test on concrete, special ty	nix c con L: 4: /pes	creti 5 PE	rete- ng-n C RIC	eria 9 Geo nass				
Mean stree UNIT V Special co polymer co Special P concrete. COURSE Upon cor CO1: CO2:	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTAL COUTCOMES: npletion of the course, the students will/ will be able to Define the materials used in construction, test on concrete, special ty and various concreting methods Describe the materials used in construction, test on concrete and spe concrete	nix c con L: 4: /pes	creti 5 PE	rete- ng-n C RIC	eria 9 Geo nass				
Mean stree UNIT V Special co polymer co Special P concrete. COURSE Upon cor CO1:	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTAN COUTCOMES: npletion of the course, the students will/ will be able to Define the materials used in construction, test on concrete, special ty and various concreting methods Describe the materials used in construction, test on concrete and spe concrete Apply the rules in the mix proportion of concrete	nix c con L: 4: /pes	creti 5 PE	rete- ng-n C RIC	eria 9 Geo nass				
Mean stree UNIT V Special co polymer c Special P concrete. COURSE Upon cor CO1: CO2: CO3:	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTAL COUTCOMES: npletion of the course, the students will/ will be able to Define the materials used in construction, test on concrete, special ty and various concreting methods Describe the materials used in construction, test on concrete and spe concrete	nix c con L: 4: /pes	creti 5 PE	rete- ng-n C RIC	eria 9 Geo nass				
Mean stree UNIT V Special co polymer co Special P concrete. COURSE Upon cor CO1: CO2: CO3: CO3: CO4: CO5:	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTAL COUTCOMES: mpletion of the course, the students will/ will be able to Define the materials used in construction, test on concrete, special ty and various concreting methods Describe the materials used in construction, test on concrete and spe concrete Apply the rules in the mix proportion of concrete Identify the special types of concrete, concreting methods Examine the properties of concrete, concreting methods	nix c con L: 4: /pes	creti 5 PE	rete- ng-n C RIC	eria 9 Geo nass				
Mean stree UNIT V Special co polymer co Special P concrete. COURSE Upon cor CO1: CO2: CO3: CO3: CO4:	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTAL COUTCOMES: npletion of the course, the students will/ will be able to Define the materials used in construction, test on concrete, special ty and various concreting methods Describe the materials used in construction, test on concrete and spe concrete Apply the rules in the mix proportion of concrete Identify the special types of concrete, concreting methods Examine the properties of concrete, concreting methods NCES:	nix c con L: 4: //pes cial	concr creti 5 PE of co type	rete- ng-n CRIC	eria 9 Geo nass DDS ete				
Mean stree UNIT V Special co polymer co Special P concrete. COURSE Upon cor CO1: CO2: CO3: CO3: CO4: CO5: REFERE 1.	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTAI COUTCOMES: npletion of the course, the students will/ will be able to Define the materials used in construction, test on concrete, special ty and various concreting methods Describe the materials used in construction, test on concrete and spe concrete Apply the rules in the mix proportion of concrete Identify the special types of concrete and their applications Examine the properties of concrete, concreting methods CNCES: Gambhir.M.L. Concrete Technology, Fifth Edition, McGraw Hill Edition	nix c con L: 4: //pes cial	concr creti 5 PE of co type	rete- ng-n CRIC	eria 9 Geo nass DDS ete				
Mean stree UNIT V Special co polymer co Special P concrete. COURSE Upon cor CO1: CO2: CO3: CO3: CO4: CO5: REFERE	ength-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY oncrete: Self Compaction concrete-Fibre reinforced concrete-Ready n concrete-Green concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTAL COUTCOMES: npletion of the course, the students will/ will be able to Define the materials used in construction, test on concrete, special ty and various concreting methods Describe the materials used in construction, test on concrete and spe concrete Apply the rules in the mix proportion of concrete Identify the special types of concrete, concreting methods Examine the properties of concrete, concreting methods NCES:	nix c con L: 4: /pes cial luca 201	concr creti 5 PE of co type	rete- ng-n CRIC	eria 9 Geo nass DDS ete				
Mean stree UNIT V Special co polymer co Special P concrete. COURSE Upon cor CO1: CO2: CO3: CO3: CO4: CO5: REFERE 1. 2. 3.	Image: Separation of the concrete of the students will/ will be able to Second the concrete of the materials used in construction, test on concrete and speconcrete Image: Second the concrete of the materials used in construction, test on concrete and speconcrete Image: Second the concrete of the materials used in construction, test on concrete and speconcrete Image: Second the concrete of the materials used in construction, test on concrete and speconcrete Image: Second the concrete of the materials used in construction, test on concrete and speconcrete Image: Second the concrete of the students will/ will be able to Define the materials used in construction, test on concrete and speconcrete Image: Apply the rules in the mix proportion of concrete Identify the special types of concrete, concreting methods Second the concrete Technology, Fifth Edition, McGraw Hill Edition, McGraw Hill Edition, McGraw Hill Edition, McGraw Hill Edition, S.Chand and Second the	nix c con L: 4: /pes cial duca 201	creti 5 PE of co type tion, 0.	rete ng-n CRIC oncro s of 201	eria 9 Geo DDS ete				
Mean stree UNIT V Special co polymer co Special P concrete. COURSE Upon cor CO1: CO2: CO3: CO3: CO4: CO5: REFERE 1. 2.	Imperiation-standard deviation- coefficient of variation- Sampling-testing-ac SPECIAL TOPIC IN CONCRETE TECHNOLOGY Imperiation on concrete-Fibre reinforced concrete-Ready necess: Second concrete-lightweight concrete. Process: Under water concreting-cold weather concrete-hot weather TOTA COUTCOMES: mpletion of the course, the students will/ will be able to Define the materials used in construction, test on concrete, special ty and various concreting methods Describe the materials used in construction, test on concrete and spe concrete Apply the rules in the mix proportion of concrete Identify the special types of concrete, concreting methods Examine the properties of concrete, concreting methods Examine the properties of concrete, concreting methods Examine the properties of concrete Technology, Fifth Edition, McGraw Hill Editor, Gupta.B.L.,Amit Gupta, "Concrete Technology, Jain Book Agency, Neville, A.M., Properties of Concrete, Prentice Hall, London, 2012. Shetty M.S., Concrete Technology, Revised Edition, S.Chand and Delhi, 2018.	nix c con L: 4: //pes cial luca 201	concreti creti 5 PE of co type tion, 0.	rete	eria 9 Geo nass DDS ete 7.				
Mean stree UNIT V Special co polymer co Special P concrete. COURSE Upon cor CO1: CO2: CO3: CO3: CO4: CO5: REFERE 1. 2. 3.	Image: Separation of the concrete of the students will/ will be able to Second the concrete of the materials used in construction, test on concrete and speconcrete Image: Second the concrete of the materials used in construction, test on concrete and speconcrete Image: Second the concrete of the materials used in construction, test on concrete and speconcrete Image: Second the concrete of the materials used in construction, test on concrete and speconcrete Image: Second the concrete of the materials used in construction, test on concrete and speconcrete Image: Second the concrete of the students will/ will be able to Define the materials used in construction, test on concrete and speconcrete Image: Apply the rules in the mix proportion of concrete Identify the special types of concrete, concreting methods Second the concrete Technology, Fifth Edition, McGraw Hill Edition, McGraw Hill Edition, McGraw Hill Edition, McGraw Hill Edition, S.Chand and Second the	nix c con L: 4: //pes cial luca 201	concreti creti 5 PE of co type tion, 0.	rete	eria 9 Geo nass DDS ete 7.				

СО	Programme Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	1	3	-	-			
CO2	3	2	3	3	1	-			
CO3	3	-	-	3	-	-			
CO4	3	-	-	3	-	-			
CO5	3	3	1	3	-	3			
Average	3	3	2	3	1	3			

Average	3	3	2	3	1		3			
	1									
SE22112		PREFAB	RICATED	STRUCTU	RES		L	Τ	P	C
							3	0	0	3
COURSEOBJE										
		sign principle		nd design o	felements					
UNIT I		N PRINCIP								9
General Civil E										
prefabrication pl		-								
of Prefabricates	, producti	on, transpor	tation, erect	ion, stages	of loading	g and	cod	e pr	ovis	ions
safety factors, m	aterial pro	operties, Defl	ection contro	ol, Lateral l	oad resistar	nce, Lo	ocat	ion a	and t	ype
of shear walls.										
UNIT II	REINF	ORCED CO	NCRETE							9
Prefabricated str	uctures - I	Long wall an	d cross-wall	large panel	buildings,	one v	vay	and	two	way
prefabricated sla	ubs, Frame	ed buildings	with partial	and curtain	n walls, -C	onnec	tion	s – 1	Bear	n to
column and colu	mn to col	umn.	-							
UNIT III	FLOOF	RS, STAIRS	ANDROOF	S						9
Types of floor	slabs, and	alysis and d	esign exam	ole of core	d and pan	el typ	bes a	and	two	-wa
systems, staircas										
joints, their beh	aviour an	d reinforcem	ent requirer	nents, Defle	ection cont	rol fo	r sh	ort	term	and
long term loads,			-							
UNIT IV	WALLS	S								9
Types of wall p	anels, Blo	ocks and larg	e panels, Cu	rtain, Parti	tion and lo	ad bea	aring	g wa	ulls, I	load
transfer from fl	oor to wa	all panels, v	ertical loads	, Eccentric	ity and sta	ability	of	wall	l pai	nels,
Design Curves,	types of w	all joints, the	eir behaviou	r and design	n, Leak pre	ventio	on, je	oint	seala	ints.
sandwich wall pa	anels, app	roximate des	ign of shear	walls.						
UNIT V		TRIAL BUI	-		ROOFS					9
Components of						ns, R.O	<u>C.</u> F	Roof	Tru	sses
Roof Panels, co										
									5	1
prefabricated shells, Erection and jointing, joint design, hand book based design. TOTAL: 45 PERIODS										
COURSE OUT	COMES:	:								
Upon completion			tudents will.	/ will be a	ble to					
		dardization,				olerand	ce sr	vster	n of	
		,		1 · · · · · · · · · · · J				,		
			25							

	prefabrication						
CO2:	Demonstrate the production, construction of structural members, detailing and codalprovisions						
CO3:	Summarize the effects of abnormal loads and codal provisions						
CO4:	Differentiate the erection processes, large panel construction and joint flexibility in prefabrication						
CO5:	Interpret the Design principles of the structural members, expansion joints, connections and abnormal loads						
REFERE	NCES:						
1.	Koncz.T., Manual of Precast Concrete Construction, Vol.I II and III & IV Bauverlag, GMBH, 1976.						
2.	Laszlo Mokk, Prefabricated Concrete for Industrial and Public Structures, Akademiai Kiado, Budapest, 2007.						
3.	Lewicki.B, Building with Large Prefabricates, Elsevier Publishing Company, Amsterdam/ London/New York, 1998.						
4.	Structural Design Manual, Precast Concrete Connection Details, Society for the Studies in the use of Precase Concrete, Netherland BetorVerlag,2009.						
5.	Warszawski, A., Industrialization and Robotics in Building - A managerial approach, Harper and Row, 1990.						

СО	Programme Outcomes							
CO	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	-	-	1		
CO2	1	-	-	2	2	1		
CO3	2	2	1	1	2	2		
CO4	2	2	2	3	2	2		
CO5	2	2	2	3	2	3		
Average	1	1	1	2	2	2		

SE22113	PRESTRESSED CONCRETE STRUCTURES	PRESTRESSED CONCRETE STRUCTURESLTP								
	3 0									
COURSEOBJE	COURSEOBJECTIVES:									
To study	• To study the principle of prestressing, analysis and design of prestressed concrete									
structures										
UNIT I	PRINCIPLES OF PRESTRESSING				9					
Basic concepts o	f Prestressing - Types and systems of prestressing - Constitu-	ent i	mate	rials	and					
their properties, A	Analysis methods, losses of prestress – Short and Long term de	flec	tions	s - C	able					
layouts - Camber	layouts - Camber									
UNIT IIDESIGN OF FLEXURAL MEMBERS9										
Behaviour of flexural members, determination of ultimate flexural strength - Various Codal										

	s - Design of flexural members, Design for shear, bond and torsion. Transfer of					
prestress -	- Design of end blocks					
UNIT III						
Analysis and design of continuous beams – Methods of achieving continuity – concept of line						
transform	ations, concordant cable profile and gap cables.					
UNIT IV DESIGN OF TENSION AND COMPRESSION MEMBERS						
Design of	f tension members - application in the design of prestressed pipes and prestressed					
	cylindrical water tanks - Design of compression members with and without flexure -					
its applica	tion in the design piles, flag masts and similar structures.					
UNIT V	DESIGN OF COMPOSITE MEMBERS 9					
Composit	e beams - analysis and design, ultimate strength - their applications. Partial					
prestressi	ng – its advantages and applications.					
	TOTAL: 45 PERIODS					
	COUTCOMES:					
Upon con	npletion of the course, the students will/ will be able to					
CO1:	State the basic concepts of prestressing, methods of achieving continuity and partial					
	prestressing					
CO2:	Understand the fundamentals of prestressing, deflection and losses in prestressed					
	concrete members					
CO3:	Design the flexural members, tension and compression embers and continuous beams					
CO4:	Analyse the tension and compression members and composite members					
CO5:	Evaluate the stresses in prestressed concrete members					
REFERE	NCES:					
1.	Arthur H. Nilson, "Design of Prestressed Concrete", John Wiley and Sons Inc, New York, 2004.					
	Krishna Raju, "Prestressed Concrete", Tata McGraw Hill Publishing Co., New					
2.	Delhi, 6 th Edition, 2018.					
3.	Lin.T.Y.andBurns.H "Design of Prestressed Concrete Structures", John Wiley and					
5.	Sons Inc, 3 rd Edition, 2010.					
4.	Rajagopalan.N, "Prestressed Concrete", Narosa Publications, New Delhi, 2014.					
5.	Sinha.N.C. and Roy.S.K, "Fundamentals of Prestressed Concrete", S.Chand and Co.,					
э.	1998.					
	Manning of Course Outcomes to Programme Outcomes					

СО	Programme Outcomes							
CO	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	-	-	-	-		
CO2	2	-	-	-	-	-		
CO3	2	-	3	3	-	-		
CO4	2	-	3	3	2	-		
CO5	2	-	3	3	2	-		
Average	2	-	3	3	2	-		

SE22114	ME	CHANICS OF COMPOSITE MATERIALS	T	Р	С			
		3	6 0	0	3			
COURSE	OBJECTIVES							
	1	edge on the characteristics of composite materials						
rei	nforcement in co	omposite materials, its manufacturing process and streng	gth an	alysis	3			
UNIT I		DUCTION			9			
		on and characteristics of Composite materials - Ac						
		- Functional requirements of reinforcement and mate						
		e, distribution, volume fraction) on overall composite		ormai	nce.			
Classificat		ll behavior – basic terminology – manufacture – advanta	ages					
UNIT II		ORCEMENTS			9			
		properties and applications of glass fibers, carbon						
		Properties and applications of whiskers, particle rei						
		omposites: Rule of mixtures, Inverse rule of mixtures	- Isos	train	and			
Isostress c								
UNIT III		FACTURING OF METAL MATRIX COMPOSITE			9			
		usion technique - Cladding - Hot isostatic pressing -						
		ng of Ceramic Matrix Composites: Liquid Metal Infiltr						
-	-	uring of Carbon – Carbon composites: Knitting, Braidi	ng, V	Veavi	ng -			
1	and applications							
UNIT IV		FACTURING OF POLYMER MATRIX COMPOSI			9			
		compounds and prepregs - hand layup method - Autoc						
	-	- Compression moulding - Reaction injection moulding	ng - F	Proper	rties			
and applic								
UNIT V	STREN				9			
		strength ratio, maximum stress criteria, maximum						
		, hygrothermal failure. Laminate first play failure-in						
	• •	ount truncated maximum strain criterion; strength desig	gn usi	ng ca	plet			
plots; stre	s concentrations		45 D					
COUDCE		TOTAL:	45 P	ERIC	JDS			
	OUTCOMES:							
Upon con		ourse, the students will/ will be able to			4			
CO1:		aracteristics of composite materials and effect of rei	niorc	emen	t in			
	composite mate							
CO2:	Classify the di	fferent types of various reinforcements used in compo	osite	matei	rials			
CO2.	and the manufacturing processes of metal matrix composites							
CO3:	Choose a reinfo	preement material for making destined composite streng	gth					
CO4:	Solve a repair v	vork by using composites materials						
CO5:	=	rch on composites and suggest such materials for curren	t prac	ctice				
REFERE			-					
		Principles of Composite Material Mechanics", McGraw	-Hill	Inc. 4	4th			
1.	edition, 2016.							

2.	Hyer, M.W., "Stress Analysis of Fiber – Reinforced Composite Materials", McGraw Hill, 2008.
3.	Issac M. Daniel and OriIshai, "Engineering Mechanics of Composite Materials", Oxford University Press-2006, First Indian Edition – 2007
4.	Mallick, P.K., Fiber, "Reinforced Composites: Materials, Manufacturing and Design", Maneel Dekker Inc, 1993.
5.	Daniel. I.M, and Ishai. O, "Engineering Mechanics of Composite Materials", Second Edition, Oxford University Press, 2005.

СО	Programme Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	-	-	-	-		
CO2	1	-	-	-	-	-		
CO3	2	2	2	2	1	2		
CO4	2	1	2	2	1	2		
CO5	3	2	2	2	1	2		
Average	2	1	2	2	1	2		

SE22221	MAINTENANCE AND REHABILITATION OF STRUCTURES	L	Т	Р	C			
	SIRUCIURES	3	0	0	3			
COURSEOBJECTIVES:								
To stue	ly the damages, repair and rehabilitation of structures							
UNIT I	INTRODUCTION				9			
General Conside	ration – Distresses monitoring – Causes of distresses – Qua	ality	ass	uran	ce –			
Defects due to	climate, chemicals, wear and erosion - Inspection - Struc	tura	l apj	prais	al –			
Economic apprai	sal- Assessment procedure for evaluating a damaged structure.	Bui	lding	g cra	.cks-			
Causes – diagno	sis – Thermal and Shrinkage cracks – unequal loading – Vege	tatio	n an	d tre	es –			
Chemical action	- Foundation movements - Remedial measures - Techniques for	or re	pair	$-E_{I}$	oxy			
injection- grouting	ng, shoring and underpinning.							
UNIT II	MOISTURE PENETRATION				9			
Sources of damp	ness - Moisture movement from ground - Reasons for ineffect	tive	DPC	C - R	loof			
leakage – Pitch	ed roofs - Madras Terrace roofs - Membrane treated room	fs -	Lea	kage	e of			
	- Dampness in solid walls - condensation - hygroscopic							
	ro cement overlay - Chemical coatings - Flexible and rigid co							
of corrosion prot	ection, corrosion inhibitors, corrosion resistant steels and catho	dic	prote	ectio	n.			
UNIT III	DISTRESSESAND REMEDIES				9			
Concrete Structu	res: Introduction - Causes of deterioration - Diagnosis of cau	ises	– Fl	ow c	charts			
for diagnosis -	Materials and methods of repair - repairing, spalling and	l di	sinte	grati	on –			

Repairing of concrete floors and pavements.

Steel Structures : Types and causes for deterioration – preventive measures – Repair procedure – Brittle fracture – Lamellar tearing – Defects in welded joints – Mechanism of corrosion – Design of protect against corrosion – Design and fabrication errors – Distress during erection.

UNIT IV MASONRY STRUCTURES AND RETROFITTING

9

Masonry Structures: Discoloration and weakening of stones – Biotical treatments – Preservation – Chemical preservatives – Brick masonry structures – Distresses and remedial measures.

Repair of structures distressed due to earthquake – Strengthening using FRP - Strengthening and stabilization techniques for repair - Types of demolition techniques - Engineered demolition techniques for structures.

9						
General principle – relieving loads – Strengthening super structures – plating – Conversation						
t						
addition – strengthening substructures – under pinning – Enhancing the load capacity of						
t						

TOTAL: 45 PERIODS

COURSE	E OUTCOMES:
Upon con	npletion of the course, the students will/ will be able to
CO1:	List the importance of maintenance, effects in structures due to climate and
	temperature variations, techniques for repair and their protection methods
CO2:	Demonstrate the causes for deterioration and the repairing techniques to improve the service life of the structures elements
CO3:	Identify the damaged structure and maintain the engineering structures safely and effectively
CO4:	Discriminate suitable type of strengthening techniques to the structures and the modern techniques for the demolition of large and hazardous structure in safe manner
CO5:	Survey the quality and durability of concrete and adopt suitable repair techniques and protection methods
REFERE	NCES:
1.	Allen R.T and Edwards S.C, "Repair of Concrete Structures", CRC Press, 2019.
2.	Dayaratnam.P and Rao.R, "Maintenance and Durability of Concrete Structures", Universities Press, India, 1997.
3.	Dodge Woodson.R,"Concrete Structures – protection, repair and rehabilitation", Elsevier Butterworth – Heinmann, UK, 2011.
4.	Hand book on seismic retrofit of Building by CPWD and IIT Madras, 2003.
5.	Peter H.Emmons, "Concrete Repair and Maintenance Illustrated", Galgotia Publications Pvt. Ltd., 2002.

СО	Programme Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	2	1	-	-	1		
CO2	2	2	2	-	-	1		
CO3	3	2	2	2	2	2		
CO4	3	2	2	2	1	2		
CO5	3	2	2	2	1	3		
Average	2	2	2	2	1	2		

SE22222	DESIGN OF FORM WORKS	L	Τ	P	С			
		3	0	0	3			
COURSEOBJ								
	• .To study and understand the detailed planning of formwork, Design of forms for							
	elements such as foundation, slabs, beams, columns and walls				-			
UNIT I	INTRODUCTION				9			
General objecti	ves of formwork building - Development of a Basic System - K	ley A	Area	s of	cost			
reduction - Rec	uirements and Selection of Formwork.							
UNIT II	FORMWORK MATERIALS AND TYPES				9			
Timber, Plywe	ood, Steel, Aluminium, Plastic, and Accessories. Horizont	al a	nd	Vert	ical			
Formwork Sup	ports. Flying Formwork, Table Form, Tunnel Form, Slip Forn	n, Fe	ormv	vork	for			
Precast Concre	te.							
UNIT III	FORMWORK DESIGN				9			
Concepts, Forn	work Systems and Design for Foundations, Walls, Columns, Sla	ab ai	nd B	eams	5.			
UNIT IV	FORMWORK DESIGN FOR SPECIAL STRUCTURES				9			
Shells, Domes,	Folded Plates, Overhead Water Tanks, Natural Draft Cooling To	ower	, Br	idges	;.			
UNIT V	FORMWORK FAILURES				9			
Formwork Ma	nagement Issues – Pre- and Post-Award. Formwork Failures: (Caus	ses a	nd C	lase			
studies in Form	work Failure, Formwork Issues in Multi story Building Construct	ctior	ı.					
	TOTA	L:4	5 PE	ERIC	DS			
COURSE OU	ГСОМЕS:							
	on of the course, the students will/ will be able to							
	ognize the importance of proper formwork, accessories design an							
	Summarize different forms of form work for Beams, Slabs, columns, Walls and Foundations							
CO3: Exe	Executing the design of form work for Special Structures							
	Describe the working of flying formwork							
CO5: Det	ermine the selection, design and failure of formwork through cas	e sti	udies	5				
REFERENCE	S:							

1.	R. L. Peurifoy and Garold D. Oberlender., "Formwork for Concrete Structures", , McGraw Hill India, 2011.
2.	Kumar NeerajJha, "Formwork for Concrete Structures", Tata McGraw Hill Education, 2012.
3.	IS 14687: 1999, False work for Concrete Structures - Guidelines, BIS.
4.	Hurd, M.K., Formwork for Concrete, Special Publication No.4, American Concrete Institute, Detroit, 1996
5.	Michael P. Hurst, Construction Press, London and New York, 2003.

Mapping of Course Outcomes to Programme Outcomes
--

СО	Programme Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	-	2	3	3	2	2		
CO2	1	-	1	2	2	3		
CO3	1	1	-	3	2	3		
CO4	-	2	1	2	3	1		
CO5	1	-	2	2	1	3		
Average	1	2	2	2	2	2		

SE22223	DESIGN OF STEEL CONCRETE COMPOSITE STRUCTURES	L	Τ	P	C			
	SIRUCIURES	3	0	0	3			
COURSEOBJECTIVES:								
	op an understanding of the behaviour and design concrete cor	npos	site e	elem	ents			
UNIT I	INTRODUCTION				9			
	steel - concrete composite construction – Codes – Com d Construction issues in design, theory of composite structures	-	ite a	actio	n –			
UNIT II	NIT II DESIGN OF COMPOSITE MEMBERS							
Design of compo	site beams, slabs, columns, beam - columns - Design of comp	osite	e trus	sses.				
UNIT III DESIGN OF CONNECTIONS								
	s – Types – Design of connections in composite structures – artial shear interaction. Deck slab – encased columns – ir axial & Bi-axial							
UNIT IV	COMPOSITE BOX GIRDER BRIDGES				9			
Introduction - be	haviour of box girder bridges and its types - design procedure	& co	ncep	ots				
UNIT V	CASE STUDIES				9			
Case studies on steel - concrete composite construction in buildings - seismic behaviour of composite structures.								
	TOTAL: 45 PERIODS							

COURSE	OUTCOMES:
Upon con	npletion of the course, the students will/ will be able to
CO1:	Generalize the knowledge in design concrete composite elements and structures
CO2:	Understanding the behavior of concrete composite elements and structures
CO3:	Identify the connection in composite structures
CO4:	Applying knowledge in design of composite beams, columns, trusses and box girder bridges
CO5.	Analysis the position to design composite beams, columns, trusses and box - girder
CO5:	bridges including the related connections
REFERE	NCES:
1.	Johnson R.P., "Composite Structures of Steel and Concrete Beams, Slabs, Columns and Frames for Buildings", Vol.I, Blackwell Scientific Publications, 2019.
2.	Oehlers D.J. and Bradford M.A., "Composite Steel and Concrete Structural Members, Fundamental behaviour", Pergamon press, Oxford, 2013.
3.	Owens.G.W and Knowles.P, "Steel Designers Manual", Steel Concrete Institute(UK), Oxford Blackwell Scientific Publications, 1992.
4.	HarshadBhandari, "Analysis and Design of Steel and Composite Structures" Scitus Academics LLC (Publisher), 2016.
5.	Teaching resource for, "Structural Steel Design," Volume 2 of 3, Institute for Steel Development and Growth (INSDAG), 2002.

СО	Programme Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	1	3	-	-			
CO2	3	2	3	3	-	-			
CO3	3	3	2	3	-	-			
CO4	3	3	1	3	3	2			
CO5	3	3	3	3	3	2			
Average	3	3	2	3	3	2			

SE22224	OFFSHORE STRUCTURES	L	Т	P	C		
		3	0	0	3		
COURSEOBJECTIVES:							
• To study the concept of wave theories, forces and design of jacket towers, pipes and							
cables							
UNIT I	WAVE THEORIES				9		
Introduction -Wa	ave generation process, small, finite amplitude and nonlinear	r wa	ave 1	theor	ries.		
Wave propagatio	n theories.						
UNIT II	FORCES OFOFFSHORE STRUCTURES				9		
Wind forces, wave forces on Vertical, Inclined cylinders, structures- small bodies and large							
bodies - current forces - Morison equation.							

UNIT III	OFFSHORE SOIL AND STRUCTURE MODELLING	9
	on - Offshore soil -Different types of offshore structures, foundation modeling, fit	xed
• •	form structural modelling.	
UNIT IV		9
	on – Procedure & concept of Static method of analysis, foundation analysis of offshore structures.	and
UNIT V	DESIGN OFOFFSHORE STRUCTURES	9
	on – offshore structure Design of platforms, helipads, Jacket tower, analysis a mooring cables and pipelines.	and
	TOTAL:45 PERIO	DS
COURSE	COUTCOMES:	
Upon con	npletion of the course, the students will/ will be able to	
CO1:	Define the wave interaction and design of offshore structure.	
CO2:	Understand the basic theoretical concepts in offshore engineering and apply then actual problems	1 to
CO3:	Execute the calculation of wave forces on fixed and floating structures and calculate the dynamic response	late
CO4:	Describe the use of design codes to check the capacity of structural members	
CO5:	Perform computer simulations, thus being prepared for the practical needs of the industry	
REFERE	NCES:	
1.	James F. Wilson, Dynamics of Offshore Structures, John Wiley & Sons, Inc, 2003	3.
2.	Reddy.D.V and SwamidasA.S.J.,Essential of offshore structures.CRC Press.2013	
3.	TurgutSarpkaya, Wave Forces on Offshore Structures, Cambridge University Pro 2010.	ess,
4.	Mohamed Abdallah El-Reedy "Off shore structures" Gulf Professional Publicatio 2012.	n,
5.	Chandrasekaran, S. 2017. Dynamic analysis and design of ocean structures.	

CO	Programme Outcomes							
CO	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	1	-	2	2		
CO2	2	2	1	1	2	3		
CO3	2	2	1	2	2	3		
CO4	1	1	-	2	-	2		
CO5	2	3	3	3	2	3		
Average	2	2	1	2	2	3		

SE22231	INDUSTRIAL STRUCTURES	L	Т	P	С	
		3	0	0	3	
COURSE	EOBJECTIVES:					
• To disseminate knowledge about planning and design of RCC and STEEL Industrial						
str	ructures					
UNIT I	PLANNING AND FUNCTIONAL REQUIREMENTS				9	
	tion of Industries and Industrial structures - planning for Lay					
	Lighting, Ventilation and Fire Safety - Protection against noi	se and	d vil	oratic	on -	
Guideline	es of Factories Act.					
UNIT II	INDUSTRIAL BUILDINGS				9	
Steel and	RCC - Gantry Girder, Crane Girders - Design of Corbels and	Nibs	– D	esigi	ı of	
Staircase,						
	Industrial Buildings - Machine foundations				1	
UNIT III					9	
• •	power plants - Containment structures - Cooling Towers - Bunke	rs and	l Silo	os - I	Pipe	
supporting structures – Design of Turbo generator foundation						
supporting						
UNIT IV	TRANSMISSION LINE STRUCTURES AND CHIMN		and	Ten	9 sion	
UNIT IV Analysis calculation of Chimm	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye uey bases.Introduction – Transmission Line Towers - Substation	Sag d chir	nney	, Des	sion sign	
UNIT IV Analysis calculation of Chimm Foundatio	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye uey bases.Introduction – Transmission Line Towers - Substation ons – Testing Towers	Sag d chir	nney	, Des	sion sign ower	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye uey bases.Introduction – Transmission Line Towers - Substation ons – Testing Towers FOUNDATION	Sag d chir Struct	nney ures	, Des - To	sion sign ower 9	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye uey bases.Introduction – Transmission Line Towers - Substation ons – Testing Towers FOUNDATION f foundation for Towers, Chimneys and Cooling Towers - Mac	Sag d chir Struct	nney ures	, Des - To	sion sign ower 9	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye ey bases.Introduction – Transmission Line Towers - Substation ons – Testing Towers FOUNDATION f foundation for Towers, Chimneys and Cooling Towers - Mac f Turbo Generator Foundation.	Sag d chir Struct hine	nney ures Four	, Des - To datio	sion sign wer 9 on -	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of Design of	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye iew bases.Introduction – Transmission Line Towers - Substation ions – Testing Towers FOUNDATION f foundation for Towers, Chimneys and Cooling Towers - Mac Turbo Generator Foundation.	Sag d chir Struct	nney ures Four	, Des - To datio	sion sign wer 9 on -	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of Design of COURSE	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye new bases.Introduction – Transmission Line Towers - Substation ons – Testing Towers FOUNDATION f foundation for Towers, Chimneys and Cooling Towers - Mac Turbo Generator Foundation. TOT E OUTCOMES:	Sag d chir Struct hine	nney ures Four	, Des - To datio	sion sign wer 9 on -	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of Design of COURSE Upon con	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye new bases.Introduction – Transmission Line Towers - Substation ons – Testing Towers FOUNDATION f foundation for Towers, Chimneys and Cooling Towers - Mac Turbo Generator Foundation. TOT E OUTCOMES: npletion of the course, the students will/ will be able to	Sag d chir Struct hine	nney ures Four	, Des - To datio	sion sign wer 9 on -	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of Design of COURSE Upon con CO1:	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye iew bases.Introduction – Transmission Line Towers - Substation iew bases.Introduction for Towers, Chimneys and Cooling Towers - Mac f foundation for Towers, Chimneys and Cooling Towers - Mac f Turbo Generator Foundation. TOT E OUTCOMES: npletion of the course, the students will/ will be able to State the properties and behaviour of industrial structures	Sag d chir Struct hine	nney ures Four	, Des - To datio	sion sign wer 9 on -	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of Design of COURSE Upon con CO1: CO2:	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye new bases.Introduction – Transmission Line Towers - Substation ons – Testing Towers FOUNDATION f foundation for Towers, Chimneys and Cooling Towers - Mac TUrbo Generator Foundation. TOT E OUTCOMES: npletion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures	Sag d chir Struct hine AL: 4	nney ures Four	, Des - To datio	sion sign wer 9 on -	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of Design of COURSE Upon con CO1: CO2: CO3:	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye iew bases.Introduction – Transmission Line Towers - Substation iew bases.Introduction for Towers, Chimneys and Cooling Towers - Mac f foundation for Towers, Chimneys and Cooling Towers - Mac f Turbo Generator Foundation. TOT E OUTCOMES: npletion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structurer both steel and	Sag d chir Struct hine AL: 4 d cond	Four 5 PI	, Des - To adatic	sion sign wer 9 on -	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of Design of COURSE Upon con CO1: CO2: CO3: CO4:	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye ey bases.Introduction – Transmission Line Towers - Substation ons – Testing Towers FOUNDATION f foundation for Towers, Chimneys and Cooling Towers - Mac FTurbo Generator Foundation. TOT COUTCOMES: npletion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structurer both steel an Analyse the structural component of Industrial structurer both steel an	Sag d chir Struct hine AL: 4 d cono nd con	Four Four	, Des - To adatic	sion sign wer 9 on -	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of Design of COURSE Upon con CO1: CO2: CO3: CO4: CO5:	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye new testing – Design of self supporting and guye new testing – Design of self supporting and guye testing Towers - Substation – FOUNDATION foundation for Towers, Chimneys and Cooling Towers - Mac TOT TOT TOT Describe frequences, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structurer both steel and Analyse the structural component of Industrial structurer both steel and Check the deflection, crack width, bending moment for industrial structurer	Sag d chir Struct hine AL: 4 d cono nd con	Four Four	, Des - To adatic	sion sign wer 9 on -	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of Design of COURSE Upon con CO1: CO2: CO3: CO4:	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye uye bases.Introduction – Transmission Line Towers - Substation ons – Testing Towers FOUNDATION f foundation for Towers, Chimneys and Cooling Towers - Mac TOT OUTCOMES: mpletion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Describe the structural component of Industrial structurer both steel an Analyse the structural component of Industrial structurer both steel an Analyse the deflection, crack width, bending moment for industrial structure structure both steel an	Sag d chir Struct hine AL: 4 d cond nd cond acture	Four Four 5 PI crete acrete	, Des - To datic	sion sign wer 9 on - DDS	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of Design of COURSE Upon con CO1: CO2: CO3: CO4: CO5:	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye new testing – Design of self supporting and guye new testing – Design of self supporting and guye testing Towers - Substation – FOUNDATION foundation for Towers, Chimneys and Cooling Towers - Mac TOT TOT TOT Describe frequences, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structurer both steel and Analyse the structural component of Industrial structurer both steel and Check the deflection, crack width, bending moment for industrial structurer	Sag d chir Struct hine AL: 4 d cond nd cond acture	Four Four 5 PI crete acrete	, Des - To datic	sion sign ower 9 on - DDS	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of Design of COURSE Upon con CO1: CO2: CO3: CO4: CO5: REFERE	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ans, Methods of tower testing – Design of self supporting and guye hey bases.Introduction – Transmission Line Towers - Substation bases.Introduction – Transmission Line Towers - Substation FOUNDATION f foundation for Towers, Chimneys and Cooling Towers - Mac Turbo Generator Foundation. TOT COUTCOMES: mpletion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structurer both steel an Analyse the structural component of Industrial structurer both steel an Analyse the structural component of Industrial structurer both steel an Check the deflection, crack width, bending moment for industrial structurer NCES: Jurgen Axel Adam, KatharriaHausmann, Frank Juttner, Klauss	Sag d chir Struct hine AL: 4 d cont nd con ucture Dani	Four Four 5 PI crete crete crete	, Des - To datio	sion sign wer 9 on - DDS trial	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of Design of COURSE Upon con CO1: CO2: CO3: CO3: CO4: CO5: REFERE 1.	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – ons, Methods of tower testing – Design of self supporting and guye uey bases.Introduction – Transmission Line Towers - Substation ons – Testing Towers FOUNDATION foundation for Towers, Chimneys and Cooling Towers - Mac TOT COUTCOMES: mpletion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural behaviour of Industrial structures Design the structural component of Industrial structurer both steel an Analyse the structural component of Industrial structurer both steel an Analyse the deflection, crack width, bending moment for industrial structurer both steel an Analyse Adam, KatharriaHausmann, Frank Juttner, Klauss Buildings: A Design Manual, Birkhauser Publishers, 2004. Santhakumar A.R. and Murthy S.S., Transmission Line Structures,	Sag d chir Struct hine AL: 4 d cond nd con acture Dani Tata	Four Four 5 PI crete crete crete crete s	, Des - To datio	sion sign wer 9 on - DDS trial Hill,	
UNIT IV Analysis calculation of Chimm Foundatio UNIT V Design of Design of COURSE Upon con CO1: CO2: CO3: CO3: CO4: CO5: REFERE 1.	TRANSMISSION LINE STRUCTURES AND CHIMN and design of steel monopoles, transmission line towers – nns, Methods of tower testing – Design of self supporting and guye hey bases.Introduction – Transmission Line Towers - Substation for besign of self supporting and guye hey bases.Introduction – Transmission Line Towers - Substation for FOUNDATION f foundation for Towers, Chimneys and Cooling Towers - Mac TOT COUTCOMES: mpletion of the course, the students will/ will be able to State the properties and behaviour of industrial structures Describe the structural component of Industrial structures Design the structural component of Industrial structurer both steel an Analyse the structural component of Industrial structurer both steel an Analyse the deflection, crack width, bending moment for industrial structurer NCES: Jurgen Axel Adam, KatharriaHausmann, Frank Juttner, Klauss Buildings: A Design Manual, Birkhauser Publishers, 2004. Santhakumar A.R. and Murthy S.S., Transmission Line Structures, 1992.	Sag d chir Struct hine AL: 4 d cond nd con acture Dani Tata	Four Four 5 PI crete crete crete crete s	, Des - To datio	sion sign wer 9 on - DDS trial Hill,	

CO	Programme Outcomes							
CO	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	1	2	-	-		
CO2	2	-	1	3	-	-		
CO3	2	-	1	-	-	-		
CO4	2	-	-	3	-	-		
CO5	2	-	3	3	-	-		
Average	2	-	1	3	-	-		

SE22232	WIND AND CYCLONE EFFECTS ON STRUCTURES	L	Т	Р	C
		3	0	0	3
COURSEOBJE	CCTIVES:				
To stu	dy the concept of wind and cyclone effects for the analysis	and	desi	ign c	of
structure	<u>s</u>				
UNIT I	INTRODUCTION				9
	ppes of wind - Characteristics of wind - Method of Measu				
•	on of wind speed with height, shape factor, aspect ratio, drag	and	lift	effec	ts -
	of wind –Pressure and suctions - Spectral studies, Gust factor.				
UNIT II	EFFECT OF WIND ON STRUCTURES				9
	f structures - Rigid and Flexible - Effect of wind on str				
0	ational vibration of structures - Static and dynamic effects on	Tal	l bui	lding	gs –
Chimneys	1				
UNIT III	DESIGN OF SPECIAL STRUCTURES				9
U	ures for wind loading – as per IS, ASCE and NBC code provis			0	
	ds - Tall Buildings - Chimneys - Transmission towers and	stee	1 mc	onop	oles
	esign, IS 875 code method, Roofs, Shelters & Plates				
UNIT IV	CYCLONE EFFECTS				9
	on - low rise structures - sloped roof structures - Tall buil				
	ldings – design of cladding – use of code provisions in cla			lesig	n –
	dure and modeling of cladding, Window glass design and proce	edur	e.		
UNIT V	WIND TUNNEL STUDIES				9
	tudies, Types of wind tunnels, Types of wind tunnel mode				
	Aero dynamic and Aero-elastic models, Prediction of acce				
	tors – Wind tunnel data analysis – Calculation of Period and da	amp	ing v	value	for
wind design.					
	ΤΟΤΑΙ	L :4 5	5 PE	ERIC	DS
COURSE OUT					
	on of the course, the students will/ will be able to				
	the characteristics of wind and effects of wind on structures				
CO2: Desc	ribe the behaviour of wind and cyclone effects on various type	bes	of st	tructu	ıres

	and wind tunnel studies
CO3:	Design high rise structures subjected wind load, even structures exposed to cyclone
CO4:	Analyse the effects of wind and cyclone on low rise and tall buildings
CO5:	Assess the static and dynamic effects on flexible and rigid structures through wind tunnel studies
REFERE	NCES:
1.	Cook.N.J., "The Designer's Guide to Wind Loading of Building Structures", Butterworths, 1989.
2.	Kolousek.V, Pirner.M, Fischer.O and Naprstek.J, "Wind Effects on Civil Engineering Structures", Elsevier Publications, 1984
3.	Lawson T.V., "Wind Effects on Building Vol. I and II", Applied Science Publishers, London, 1980.
4.	Peter Sachs, "Wind Forces in Engineering", Pergamon Press, New York, 1978.
5.	Emil Simiu, DongHun Yeo "Wind Effects on Structures: Modern Structural Design for Wind", Wiley-Blackwell; 4th edition (1 March 2019).

СО	Programme Outcomes							
CO	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	1	3	-	-		
CO2	3	2	3	3	-	-		
CO3	3	3	2	3	-	-		
CO4	3	3	1	3	3	2		
CO5	3	2	3	3	3	2		
Average	3	3	2	3	3	2		

SE22233	NONLINEAR ANALYSIS OF STRUCTURES	L	Т	P	С		
		3	0	0	3		
COURSEOBJECTIVES:							
To study	the concept of non-linear behaviour and analysis of elem	ents	and	1 sin	nple		
structures	5						
UNIT I	INTRODUCTION TO NON-LINEAR ANALYSIS				9		
Material non-li	nearity, geometric non-linearity; statically determinate	an	d s	static	ally		
indeterminate ba	r systems of uniform and variable thickness. Nonlinear govern	ning	Equ	ation	for		
beams: moment	-Curvature nonlinearity, geometric nonlinearity due to stre	etchi	ng,	mate	erial		
nonlinearity - ge	cometrically nonlinear beam problems - Cantilever beam: M	lome	ent-c	curva	ture		
nonlinearity - Ce	ntrally loaded beam with two supports - Cantilever beam subje	cted	l to t	ip lo	ad.		
UNIT II	INELASTIC ANALYSIS OF FLEXURAL MEMBERS				9		
Inelastic analysi	s of uniform and variable thickness members subjected to	o ge	ome	tric	and		
material non-line	material non-linearity; inelastic analysis of bars of uniform and variable stiffness members wit						
and without axia	l Restraints.						
UNIT III	VIBRATION THEORY AND ANALYSIS OF FLEXURAL						
	MEMBERS						

Vibration	theory and analysis of flexural members; hysteretic models and analysis of unifor	rm
and variab	ble stiffness members under cyclic loading.	
UNIT IV	ELASTIC AND INELASTIC ANALYSIS OF PLATES	9
Elastic and	d inelastic analysis of uniform and variable thickness plates.	
UNIT V	NON-LINEAR VIBRATION AND INSTABILITY	9
Nonlinear	r vibration and Instabilities of elastically supported beams.	
	TOTAL: 45 PERIOI	DS
COURSE	E OUTCOMES:	
Upon con	npletion of the course, the students will/ will be able to	
CO1:	Gain knowledge on material and geometric nonlinearity in bars and beams	
CO2:	Explain the uniform and variable stiffness members under cyclic loading	
CO3:	Understand the elastic as well as inelastic analysis of flexural members including	ng
005:	beams and plates	
CO4:	Apply the vibration theory for analyzing flexural members	
CO5:	Analyze Instabilities of elastically supported beams for the nonlinear vibration	
REFERE	INCES:	
1.	Fertis, D.G, Non-linear Mechanics, CRC Press, 1999.	
2.	Reddy.J.N, Non-linear Finite Element Analysis, Oxford University Press, 2008.	
3.	Sathyamoorthy.M, Nonlinear Analysis of Structures, CRC Press, 2010.	
4.	Chuen-Yuan Chia," Nonlinear Analysis of Plates", McGraw-Hill International Book	
4.	Company, 1980.	
5.	Arthur W. Leissa," Vibration of Shells" Acoustical Society of America"1993	

СО	Programme Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	3	-	-	1		
CO2	1	-	3	1	2	1		
CO3	2	-	3	1	2	1		
CO4	2	-	3	2	2	1		
CO5	2	-	3	3	2	1		
Average	2	-	3	2	2	1		

SE22234	OPTIMIZATION OF STRUCTURES	L	Т	P	С
		3	0	0	3
COURSEOB.	IECTIVES:				
• To stud	ly the optimization methodologies applied to structural engine	ering			
UNIT I	BASIC PRINCIPLES AND CLASSICAL OPTIMIZAT	FION			9
	TECHNIQUES				
Definition – C	bjective Function; Constraints – Equality and inequality – Li	near ai	nd no	on-li	near
Side, Non-neg	ativity, Behaviour and other constraints – Design space – Feas	ible ar	nd in	feasi	ible-

Convex and Concave – Active constraint – Local and global optima. Differential calculus – Optimality criteria – Single variable optimization – Multivariable optimization with no constraints- - (Lagrange Multiplier method) – with inequality constraints (Khun – Tucker Criteria).

UNIT IILINEAR AND NON-LINEAR PROGRAMMINGLINEAR PROGRAMMING:

Formulation of problems -Graphical solution – Analytical methods- Standard form - Slack, surplus and artificial variables – Canonical form – Basic feasible solution - simplex method – Two phase method – Penalty method- Duality theory – Primal – Dual algorithm, Dual Simplex method.

NON LINEAR PROGRAMMING:

One Dimensional minimization methods: Unidimensional - Unimodal function – Exhaustive and unrestricted search – Dichotomous search - Fibonacci Method – Golden section method - Interpolation methods. Unconstrained optimization Techniques.

UNIT III GEOMETRIC PROGRAMMING

Polynomial – degree of difficulty – reducing G.P.P to a set of simultaneous equations – Unconstrained and constrained problems with zero difficulty – Concept of solving problems with one degree of difficulty.

UNIT IV DYNAMIC PROGRAMMING

Bellman's principle of optimality – Representation of a multistage decision problem- concept of sub-optimization problems using classical and tabular methods

UNIT V STRUCTURAL APPLICATIONS

Methods for optimal design of structural elements, continuous beams and single storied frames using plastic theory -Minimum weight design for truss members - Fully stressed design – Optimization principles to design of R.C. structures such as multi-storey buildings, water tanks and bridges.

TOTAL: 45 PERIODS

9

9

9

COURSE OUTCOMES:

Upon completion of the course, the students will.../ will be able to...

CO1:	Apply the knowledge of engineering fundamentals to formulate and solve the				
001	engineering problems by classical optimization techniques				
0.00	Identify, formulate and solve engineering problems by linear and non-linear				
CO2:	programming				
CO3:	Analyse the problem and reducing G.P.P to a set of simultaneous equations				
CO4:	Apply the Engineering knowledge to understand the concept of dynamic				
CO4:	programming				
CO5:	Design various structural elements with minimum weight				
REFERE	REFERENCES:				
1	Iyengar.N.G.R and Gupta.S.K, "Structural Design Optimization", Affiliated East				
1.	West Press Ltd, New Delhi, 1997.				
2	Rao,S.S. "Engineering Optimization: Theory and Practice", Fourth Edition, Wiley				
2.	Eastern (P) Ltd., 2013.				
3.	Spunt, "Optimization in Structural Design", Civil Engineering and Engineering				

	Mechanics Services, Prentice-Hall, New Jersey 1971.
4.	Uri Kirsch, "Optimum Structural Design", McGraw Hill Book Co. 1981.
5.	Haftka, R. T. and Gurdal, Z., Elements of Structural Optimization, Springer, 3 rd Edition, 1992.

СО	Programme Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	3	-	-	1		
CO2	1	-	3	1	2	1		
CO3	2	-	3	1	2	1		
CO4	2	-	3	2	2	1		
CO5	2	_	3	3	2	1		
Average	2	-	3	2	2	1		

AUDIT COURSES

AC22101	ENGLISH FOR RESEARCH PAPER WRITING	L	Τ	P	С
		2	0	0	0
COURSEOBJE	CTIVES:				
Teach ho	w to improve writing skills and level of readability				
• Tell abou	t what to write in each section				
• Summari	ze the skills needed when writing a Title				
• Infer the	skills needed when writing the Conclusion				
• Ensure th	e quality of paper at very first-time submission				
UNIT I	INTRODUCTION TO RESEARCH PAPER WRITING				6
Planning and Pre	eparation, Word Order, Breaking up long sentences, Structurin	ng Pa	ragra	aphs	and
Sentences, Being	Concise and Removing Redundancy, Avoiding Ambiguity and	nd Va	ague	ness.	
UNIT II	PRESENTATION SKILLS				6
Clarifying Who	Did What, Highlighting Your Findings, Hedging and Criticiz	ing, 1	Para	phras	sing
and Plagiarism, S	Sections of a Paper, Abstracts, Introduction.				
UNIT III	TITLE WRITING SKILLS				6
Key skills are ne	eded when writing a Title, key skills are needed when writing	g an A	Abst	ract,	key
skills are needed	d when writing an Introduction, skills needed when writing	a Ro	eviev	w of	the
Literature, Metho	ods, Results, Discussion, Conclusions, The Final Check.				
UNIT IV	RESULT WRITING SKILLS				6
Skills are needed	when writing the Methods, skills needed when writing the	Resu	lts, s	skills	are
	ting the Discussion, and skills are needed when writing the Co				
UNIT V	VERIFICATION SKILLS				6
Useful phrases, o	checking Plagiarism, how to ensure paper is as good as it cou	ld po	ssib	ly be	the
first- time submi	ssion.	-			
	ΤΟΤΑ	L: 3	0 PI	ERIC	DDS

COURSE	OUTCOMES:
Upon con	npletion of the course, the students will/ will be able to
CO1:	Understand that how to improve your writing skills and level of readability
CO2:	Learn about what to write in each section
CO3:	Understand the skills needed when writing a title
CO4:	Understand the skills needed when writing the conclusion
CO5:	Ensure the good quality of paper at very first-time submission
REFERE	NCES:
1.	Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011.
2.	Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006.
3.	Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998.

AC22102	CONSTITUTION OF INDIA	L	Τ	P	С
		2	0	0	0
COURSEOBJECTIVES:					

Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.

To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional Role and entitlement to civil and economic rights as well as the emergence nation hood in the early years of Indian nationalism.

To address the role of socialism in India after the commencement of the Bolshevik Revolutionin1917and its impact on the initial drafting of the Indian Constitution

UNIT I	HISTORY OF MAKING OF THE INDIAN	5
	CONSTITUTION	
History, Draftin	g Committee, (Composition & Working)	
UNIT II	PHILOSOPHY OF THE INDIAN CONSTITUTION	5
Preamble, Salie	nt Features	
UNIT III	CONTOURS OF CONSTITUTIONAL RIGHTS AND	5
	DUTIES	
Freedom of Re	ights, Right to Equality, Right to Freedom, Right against Exploitat eligion, Cultural and Educational Rights, Right to Constitutiona ples of State Policy, Fundamental Duties.	
UNIT IV	ORGANS OF GOVERNANCE	5
Executive, Pres	omposition, Qualifications and Disqualifications, Powers and ident, Governor, Council of Ministers, Judiciary, Appointment and eations, Powers and Functions LOCAL ADMINISTRATION	

District's Administration head: Role and Importance Municipalities: Introduction, Mayor and role of Elected Representative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI: ZilaPachayat. Elected officials and their roles, CEO ZilaPachayat: Position and role. Block level: Organizational Hierarchy(Different departments), Village level:Role of Elected and Appointed officials, Importance of grass root democracy.

UNIT VI		`ELECTION COMMISSION	5		
Election C	Commi	ission: Role and Functioning. Chief Election Commissioner and Election			
Commissi	ioners	- Institute and Bodies for the welfare of SC/ST/OBC and women.			
		TOTAL:30 PERIO	DS		
COURSE	E OUI	COMES:			
Upon con	npletio	on of the course, the students will/ will be able to			
CO1:	Discu	uss the growth of the demand for civil rights in India for the bulk of India	ans		
	befor	re the arrival of Gandhi in Indian politics			
CO2: Discuss		uss the intellectual origins of the framework of argument that informed	the		
	conceptualization of social reforms leading to revolution in India.				
	Discu	uss the circumstances surrounding the foundation of the Congress Socia	list		
CO3:	Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the				
	prop	osal of direct elections through adult suffrage in the Indian Constitution			
CO4:	Discu	uss the passage of the Hindu Code Bill of 1956			
REFERE	NCES	5:			
1.	The	Constitution of India, 1950(Bare Act), Government Publication.			
2.	Dr.S	.N.Busi, Dr.B. R.Ambedkar framing of Indian Constitution, 1st Edition, 2015.			
3.	M.P.	Jain, Indian Constitution Law, 7th Edn., Lexis Nexis,2014.			
4.	D.D.	Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.			